Reg. No. :

Question Paper Code: 44002

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2017

Fourth Semester

Civil Engineering

14UMA422 - NUMERICAL METHODS

(Common to EEE, EIE and ICE Branches)

(Regulation 2014)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions

(Smith chart may be permitted)

PART A - (10 x 1 = 10 Marks)

1. The order of convergence of method of false position is

(a) 1.618 (b) 1.816 (c) 1.168 (d) 1.186

2. The condition for convergence of Iteration method is

(a) $ \emptyset'(x) > 1$	(b) $ \phi'(x) < 1$
(c) $ \emptyset'(x) = 1$	(d) $ \emptyset'(x) < 0$

3. If the eigen values of A are -3,1,2 then dominant eigen value is

(a) 3 (b) -3 (c) 2 (d) 1

4. In Gauss Seidel method, diagonally dominant condition of coefficient matrix is

- (a) Necessary and sufficient (b) Necessary but not sufficient
- (c) Sufficient but not necessary (d) Neither necessary nor sufficient

5. I If $=\frac{x-x_0}{h}$, th	en the error in Newton	's forward interpolation	ı formula i	S
(a) $\frac{u(u-1)}{u(u-1)}$	$\frac{1)(u-n)}{(n)!} h^{n+1} f^{n+1}(c)$	(b) $\frac{u(u-1)(u)}{(n-1)!}$	$\frac{(n-n)}{2}h^{n+1}f$	$^{n+1}(c)$
(c) $\frac{u(u-1)}{(u-1)^2}$	$\frac{1)(u-n)}{(n+1)!} h^{n+1} f^{n+1}(c)$	(d) $\frac{u(u-1)(u)}{(n+1)!}$	$\frac{(n-n)}{n}h^nf^n($	<i>c</i>)
6. Forward interp	polation formula is use	d to interpolate value of	y for	
(a) 0 <	<i>p</i> < 1 (b) −1 <	(p < 0) (c) $0 <$	$p < -\alpha$	(d) $-\alpha$
7. The number o Simpson's 3/8	f equal sub intervals re rule to evaluate an	quired to apply both Sin integral is	npson's 1/	'3 rule and
(a) Any	' number	(b) Any mul	tiple of 2	
(c) Any	multiple of 6	(d) Any mul	tiple of 3	
8. If the n^{th} div	ided difference of a po	lynomial is constant the	en the poly	ynomial is of degree
(a) 0	(b) n +1	(c) n -1	(d)) n
9. The number o	f equations needed to s	olve two unknowns in a	a system of	f equations is
(a) 2	(b) 3	(c) 5	(d) 6	
10. The method	of group averages is ba	sed on the assumption t	hat the sur	m of the residuals is
(a) 0	(b) 1	(c) 2		(d) 3

PART - B (5 x 2 = 10 Marks)

- 11. State fixed point theorem. 12. Find inverse of A = $\begin{pmatrix} 1 & 3 \\ 2 & 7 \end{pmatrix}$ by Gauss – Jordan method.
- 13. Define Lagrange's inverse interpolation formula.
- 14. State the formula for three Point Gaussian-quadrature.
- 15. State the principle of least squares.

PART - C (
$$5 \times 16 = 80$$
 Marks)

- 16. (a) (i) Find an approximate root of $x \log_{10} x 1.2 = 0$ by False position method. (8)
 - (ii) Find the positive root of $x = \cos x$ usings Newton's method. (8)

Or

- (b) (i) Find an iterative formula to find the reciprocal of a given number N and hence find the value of $\frac{1}{19}$. (8)
 - (ii) Solve the equation $x^3 + x^2 1 = 0$ for the positive root (correct to 4 decimal places) by iteration method. (8)

17.(a) (i) Solve
$$10x - 5y - 2z = 3$$
; $4x - 10y + 3z = -3$; $x + 6y + 10z = -3$, by Gauss
Jacobi method. (8)

(ii) Find the inverse of
$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & -1 & 1 \\ 4 & 2 & -3 \end{pmatrix}$$
 by using Gauss Jordan method. (8)

Or

(b) Find by power method, the largest eigen value and the eigen vector of the $\begin{bmatrix} 25 & 1 & 2 \end{bmatrix}$

$$\text{matrix} \begin{bmatrix} 23 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{bmatrix}$$
 (16)

18. (a) (i) From the following table, find the value of $\tan 45^{\circ}15'$

 x^0 454647484950 $\tan x^0$ 1.000001.035531.072371.110611.150371.19175

(ii) From the following table find f(x) and hence f(15) using Newton's

interpolation formula:

x	4	5	7	10	11	13
f(x)	48	100	294	900	1210	2028

Or

(b) (i) Using Lagrange's interpolation formula, find *y* (9.5) given

x	7	8	9	10
у	3	1	1	9

(ii) From the following table find f (x) and hence f (6) using Newton's interpolation formula.(8)

44002

(8)

(8)

(8)

x	1	2	7	8
У	1	5	5	4

19. (a) (i) Evaluate ∫₋₃³ x⁴ dx using (i) Trapezoidal rule and (ii) Simpson's 1/3 rule by dividing 6 equal subintervals. Verify your results by actual integration. (8)
(ii) Evaluate ∫₁^{1.4} ∫₂^{2.4} dxdy/xy using Simpson's rule, taking h = k = 0.1. Verify your result by actual integration. (8)

(b) Evaluate $\int_{1}^{1.4} \int_{2}^{2.4} \frac{dxdy}{xy}$ using Trapezoidal rule and Simpson's rule with h = 0.1 and k = 0.1. (16)

20. (a) (i) By the method of least squares find the best fitting straight line to the data given below. (8)

x	5	10	15	20	25
У	15	19	23	26	30

(ii) Fit a curve of the form $y = ab^x$ to the data.

x	1	2	3	4	5	6
у	151	100	61	50	20	8
	•		Or	•		

(b) (i) Obtain a curve of the form $y = ax^{b}$ to the data by the method of group averages. (8)

x	10	20	30	40	50	60	70	80
У	1.06	1.33	1.52	1.68	1.81	1.91	2.01	2.11

(ii) By the method of least squares, fit a curve of the form $y = ab^x$ to the data given below: (8)

x	1	2	3	4	5	6
У	151	100	61	50	20	8

(8)