Reg. No.:									
-----------	--	--	--	--	--	--	--	--	--

Question Paper Code: 59092

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2017

Elective

Chemical Engineering

15UCH917 - WASTE WATER TREATMENT

	(Regul	ation 2015)
Du	ration: Three hours	Maximum: 100 Marks
	Allswei	ALL Questions
	PART A - (1)	$0 \times 1 = 10 \text{ Marks})$
1.	The reduction of disease causing microcalled	roorganisms by physical or chemical means is
	(a) disinfection	(b) reclamation
	(c) recycling	(d) repurification
2.	The residue remaining after a wastewa specified temperature of 103 to 105°C is	ater sample has been evaporated and dried at a called
	(a) total volatile solids	(b) total fixed solids
	(c) total suspended solids	(d) total solids
3.	The ratio between peak flow rates of wastewater is called	wastewater to average long term flow rate of
	(a) sustained flow	(b) peaking factor
	(e) hydraulic factor	(d) retention time
4.	type reactor is used in chloring	e contact basin and natural wastewater treatment
	system.	
	(a) batch	(b) plug flow
	(c) complete mix	(d) fluidized bed

5.	The chemical destabilization of par during perikinetic and orthokinetic f	ticles in wastewater to bring about their aggregation flocculation is called
	(a) chemical disinfection(c) chemical coagulation	(b) chemical oxidation(d) chemical precipitation
6.	In advanced oxidation process constituents in wastewater.	is used as strong oxidant to destroy organic
	(a) free hydroxyl radical(c) chlorine	(b) ozone(d) permanganate
7.	One of the steps involved in the ove	rall anaerobic oxidation of a waste is
	(a) nitrification(c) sedimentation	(b) de-chlorination(d) methanogenesis
8.	The procedure used to increase the sliquid fraction is	solids content of sludge by removing a portion of the
	(a) digestion(c) clarification	(b) thickening(d) incineration
9.	In fitration, the removal of of the filter bed.	suspended material occurs within and on the surface
	(a) depth(c) membrane	(b) surface(d) centrifugal
10.	An example for naturally occurring	ion – exchange material is
	(a) chelating resins(c) zeolites	(b) phenolic polymers(d) bakelite
	PART -	B $(5 \times 2 = 10 \text{ Marks})$
11.	What is primary treatment of wastev	vater? Give examples.
12.	List out the components that make u	up the wastewater flow from a community.
13.	Define chemical neutralization. Why	y it is done in water treatment plants?
14.	Summarize the overall objectives of	biological treatment of wastewater.
15	What are the advantages and disadv	antages of membrane treatment technologies?

PART - C (5 x 16 = 80 Marks)

16.	(a)	(i) Explain the health and environmental concerns in wastewater management and treatment. (10)					
		(ii) What is wastewater characterization? Discuss its importance. (6)					
		Or					
	(b)	Describe the various sources of metallic pollutants in wastewater and health hazards produced by metallic impurities. (16)					
17.	(a)	Discuss the principle types of reactors used for the treatment of wastewater. (16)					
		Or					
	(b)	Explain the important factors that must be considered when evaluating and selecting unit operations and processes for wastewater treatment. (16)					
18.	(a)	Describe the mechanism involved in the removal of pollutants from wastewater by: chemical coagulation and chemical precipitation. (16)					
	Or						
	(b)	Explain the operating principle of dry chemical feed system and liquid chemical feed system for wastewater treatment. (16)					
19.	(a)	With a neat sketch discuss the characteristics, working principle and applications of trickling filter. (16)					
	Or						
	(b)	(i) Describe the process for the treatment and disposal of solid wastes by aerobic digestion method. (8)					
		(ii) What is incineration? List out the advantages, disadvantages and various methods of incineration. (8)					
20.	(a)	Identify the advanced technologies used for the removal of organic and inorganic colloidal and suspended solids and explain their working principle. (16)					
		Or					
	(b)	With neat sketch, explain the filtration process principle and particle removal mechanism in depth filtration. (16)					