Reg. No. :

Question Paper Code: 50444

B.E. / B.Tech. DEGREE EXAMINATION, MAY 2017

Fourth Semester

Electronics and Communication Engineering

15UEC404 - SIGNALS AND SYSTEMS

(Regulation 2015)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions

PART A - $(5 \times 1 = 5 \text{ Marks})$

1. Time shifting property mathematically can be expressed as

(a) y(t) = x(t-T) (b) y(t) = x(t) (c) y(t) = x(t) + 1 (d) y(t) = x(t) - 1

2. If x(t) is both real and even, then $x(j\Omega)$ will be

(a) Real and Odd	(b) Real and Even
(c) Imaginary and Odd	(d) Imaginary and Even

3. If $\delta(t)$ denotes a unit impulse, then the Laplace transform of $(d^2\delta(t)/dt^2)$ will be

(a) 1 (b) S^2 (c) S (d) S^{-2}

4. If Fourier transform of x(n) is X(e^{j0}) then Fourier transform of x*(-n) is
(a) X*(e^{-j0})
(b) X(e^{-j0})
(c) X*(e^{j0})
(d) iX*(e^{-j0})

- 5. The Region of Convergence(ROC) of the Z-transform of a unit step function is
 - (a) |z| < 1 (b) (Real Part of Z) > 0

 (c) (Real Part of Z) < 0</td>
 (d) |z| > 1

PART - B (5 x 3 = 15 Marks)

- 6. Draw a graph and write the mathematical expression for unit parabolic function.
- 7. What is meant by half wave symmetry?

- 8. What are the drawbacks of transfer function method of representing system?
- 9. List the properties of frequency response of $H(e^{j0})$ of an LTI system.

10. Define system function.

PART - C (5 x
$$16 = 80$$
 Marks)

- 11. (a) (i) Explain with supporting equations of energy and power signals. (10)
 - (ii) Find the signal $x(n) = (1/3)^n u(n)$ is energy signal or not. (6)

Or

- (b) (i) Explain in detail about stable and unstable systems. (8)
 - (ii) Check whether the following system are static/dynamic and linear/non-linear, A modulator whose carrier frequency is Ω_c giving an output $y(t) = x(t) \cos \Omega_c t$. (8)
- 12. (a) Explain in detail about the properties of continuous time Fourier series signals. (16)

Or

- (b) Find the Fourier transform of the signal $x(t) = \cos(\Omega_0 t)$. (16)
- 13. (a) (i) List the properties of Region of Convergence (ROC). (8)
 - (ii) State and proof the transformation of the integrals. (8)

Or

- (b) Find the Inverse Laplace transform of $X(S) = (2S+1)/(S+1)(S^2+2S+2)$. (16)
- 14. (a) Find the frequency response of a I order system described by difference equation y(n) = a y(n-1) + x(n). Plot magnitude and phase response for a = 0.5. (16)

Or

- (b) State and proof the following properties of discrete time Fourier transform
- (i) Linearity
 (ii) Convolution in time domain
 (8)
 (15. (a) (i) List the properties of Z-transform and explain briefly.
 (10)

50444

(ii) Determine the Z-transform, ROC and pole-zero locations of X(Z) for, $x(n) = (2/3)^n u(n) + (-1/2)^n u(n).$ (6)

Or

- (b) (i) Obtain the Cascade form realization of the system described by the difference equation y(n) (1/4) y(n-1) (1/8) y(n-2) = x(n) + 3 x(n-1) + 2 x(n-2). (8)
 - (ii) Obtain the direct form-I realization for the system described by the difference equation y(n) (5/6) y(n-1) + (1/6) y(n-2) = x(n) + 2 x(n-1). (8)

#