| Reg. No.: |  |  |  |  |  |
|-----------|--|--|--|--|--|

## **Question Paper Code: 41012**

## B.E. / B.Tech. DEGREE EXAMINATION, MAY 2017

First Semester

Civil Engineering

## 14UMA102 - ENGINEERING MATHEMATICS - I

(Common to ALL branches)

(Regulation 2014)

Duration: Three hours Maximum: 100 Marks

Answer ALL Questions.

PART A - 
$$(10 \times 1 = 10 \text{ Marks})$$

- 1. If 1 and 2 are the eigen values of 2x2 matrix A. what are the eigen values of  $A^2$ .
  - (a) 1 & 2
- (b) 1 & 4
- (c) 2 & 4
- (d) 2 & 3

- $2. \quad \begin{vmatrix} 1 & 2 \\ 0 & 2 \end{vmatrix} =$ 
  - (a) 0

- (b) 1
- (c) 2
- (d) 3
- 3. Is this series convergent or divergent?  $1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \dots$ 
  - (a) convergent

- (b) divergent
- (c) Absolute converge

(d) none of these

- 4. D'Alembert's test is also called
  - (a) Ratio test
- (b) Root test
- (c) Abel's test
- (d) none of these

- 5. The radius of curvature of the curve  $y = e^x$  at (0,1) is
  - (a)  $2\sqrt{2}$
- (b)  $\sqrt{2}$
- (c) 2
- (d)  $2\sqrt{3}$
- 6. The envelope of the family of straight lines  $2\sqrt{2}$   $y = mx + am^2$ , m being parameter is
  - (a)  $y^2 = 4ax$
- (b)  $x^2 = 4ay$  (c)  $y^2 = -4ax$  (d)  $x^2 = -4ay$

- 7. If u = (x-y)(y-z)(z-x), then  $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} =$ 
  - (a) 0
- (b) 1
- (c) ∞
- (d) none of these

- 8. If  $x = r \cos \theta$ ,  $y = r \sin \theta$ , then  $\frac{\partial (x, y)}{\partial (r, \theta)} =$ 
  - (a) 1
- (b) *r*
- (c)  $r^2$
- (d) 0

- $\int \int \int xyzdzdydx$ 
  - (a)  $\frac{a^2b^2c^2}{8}$  (b)  $\frac{abc}{8}$
- (c) *abc*
- (d)  $a^2b^2c^2$

- $\int_{0}^{1} \int_{0}^{2} xy^{2} dydx$ 10. 00
  - (a) 6/8
- (b) 8/6
- (c) 1/2
- (d) 2

PART - B (5 x 2 = 10 Marks)

- 11. Find the characteristic equation of the matrix  $\begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$
- 12. Test for convergence of the series  $\sum_{n=1}^{\infty} \left[ \sqrt[3]{n^3 + 1} n \right]$ .
- 13. Find the radius of curvature at the point (c, c) on the curve  $xy = c^2$ .
- 14. State Euler's theorem on homogeneous functions.

15. Indicate the region of integration of  $\int_{0}^{a} \int_{\frac{x^{2}}{a}}^{x} x dy dx$ .

PART - C (5 x 
$$16 = 80 \text{ Marks}$$
)

16. (a) Verify Cayley Hamilton's theorem and hence find the inverse of the matrix

$$\begin{bmatrix} 2 & -1 & 2 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$
 (16)

Or

- (b) Reduce the Q.F  $x^2 + y^2 + z^2 2xy 2yz 2zx$  in to a canonical form by an orthogonal transformation. (16)
- 17. (a) Discuss the convergence of the series whose n<sup>th</sup> term is  $\frac{3.6.9....3n}{4.7.10......3n+1} \cdot \frac{2^n}{3n+2}$  (16)

Or

- (b) Prove that if b-1>a>0, the series  $1+\frac{a}{b}+\frac{a(a+1)}{b(b+1)}+\frac{a(a+1)(a+2)}{b(b+1)(b+2)}+....$  converges. (16)
- 18. (a) Prove that the radius of curvature at any point of the cycloid  $x = a(\theta + \sin \theta); y = a(1 \cos \theta)$  is  $4a \cos \frac{\theta}{2}$ . (16)

Or

(b) Considering the evolute as the envelope of normals, find the evolute of  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ . (16)

19. (a) Given the transformations  $u = e^x \cos y$  and  $v = e^x \sin y$  and that  $\phi$  is a function of u and v and also of v and v a

Or

- (b) A rectangular box open at the top, is to have a volume of 32cc. Find the dimensions of the box, that requires the least material for its constructions. (16)
- 20. (a) Change the order of integration and hence evaluate it  $\int_{0}^{4a} \int_{\frac{x^2}{4a}}^{2\sqrt{ax}} xydydx$ . (16)

Or

(b) Evaluate 
$$\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{\sqrt{x+y}} zdzdydx$$
 (16)

4