Reg. No. :

Maximum: 100 Marks

Question Paper Code: 52511

M.E. DEGREE EXAMINATION, MAY 2017

First Semester

Power Electronics and Drives

15PMA126 - APPLIED MATHEMATICS FOR ELECTRICAL ENGINEERS

(Regulation 2015)

Duration: Three hours

Answer ALL Questions

PART A - $(5 \times 1 = 5 \text{ Marks})$

- 1. Every matrix of order m x n can be factor into two product of Q having vectors of its columns and matrix R
- (a) Upper triangular(b) Lower triangular(c) Orthogonal(d) Equivalent2. In a simplex method if the net evaluation $(Z_j C_j) \ge 0$, then the current solution is(a) feasible(b) not optimal(c) optimal(d) not feasible3. A random variable X has E(X) = 1 and E(X(X-1)) = 4 then Var(X) is(a) 5(b) 4(c) 6(d) 3
- 4. What is the classification of $f_x + 2 f_{xx} = 0$?
 - (a) parabolic (b) ellipse (c) hyperbolic (d) none of these
- 5. $\nabla^2 u = f(x, y)$ then it is called
 - (a) Laplace (b) Poisson
 - (c) one dimensional heat equation (d) none of these

PART - B (5 x 3 = 15 Marks)

6. Define Unitary matrix.

7. List any two basic differences between a transportation and assignment problem.

- 8. Find the moment generating function of Poisson distribution.
- 9. State convergence of the series.
- 10. Write down the SFPF for solving Laplace equation.

PART - C (5 x
$$16 = 80$$
 Marks)

11. (a) Construct a QR decomposition for the matrix $A = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$ (16)

Or

- (b) Find a generalized eigen vector of rank 3 corresponding to the eigen value $\lambda = 7$ for the matrix $A = \begin{bmatrix} 7 & 1 & 2 \\ 0 & 7 & 1 \\ 0 & 0 & 7 \end{bmatrix}$. (16)
- 12. (a) Solve the LPP using simplex method $Max Z = 5x_1 + 4x_2$ subject to the constraints $4x_1 + 5x_2 \le 10$, $3x_1 + 2x_2 \le 9$, $8x_1 + 3x_2 \le 12$, $x_1, x_2 \ge 0$. (16)

Or

-

(b) Solve the transportation problem.

	Destination						
		А	В	С	D		
Source	Ι	21	16	25	13	11	Availability
	II	17	18	14	23	13	
	III	32	27	18	41	19	
Requirement	L	6	10	12	15	43	

13. (a) The density function of a r.v X is given by $f(x) = k x(2 - x), 0 \le x \le 2$. Find the value of K, mean, variance. (16)

Or

52511

(16)

- (b) The probability distribution function of a random variable X is $f(x) = \begin{cases} x, & 0 < x < 1 \\ 2 x, & 1 < x < 2 \\ 0, & x > 2 \end{cases}$
 - Find the MGF and hence find mean and variance. (16)
- 14. (a) Find the eigen values and eigen functions of $y'' + \lambda y = 0$, 0 < x < 1, y(0) = 0, y(1) + y'(1) = 0. (16)

Or

- (b) Find the DFT of the four point sequence {x(k)}={1, 1, 0, 0} and then calculate inverse DFT of the points.
- 15. (a) Solve the Poisson equation $\nabla^2 u = -10(x^2 + y^2 + 10)$ over the square mesh with sides x = 0 = y, x = 3 = y with u = 0 on the boundary and mesh length is 1. (16)

Or

(b) Solve $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ in 0 < x < 1, $t \ge 0$ given that u(x, 0) = 0, u(0, t) = 0, u(1, t) = t. Compute u for the time step with $h = \frac{1}{4}$ by Crank-Nicholson method. (16)

#