Reg. No.:					

Question Paper Code: 41044

B.E. / B.Tech. DEGREE EXAMINATION, MAY 2017

Fourth Semester

Electronics and Communication Engineering

	14UMA424	- PROBABILITY AND	RANDOM PROCESS	S
		(Regulation 2014	4)	
Du	ration: Three hours		Maxim	um: 100 Marks
		Answer ALL Quest	tions	
		(Statistical Tables are po	ermitted)	
		PART A - $(10 \times 1 = 10)$	Marks)	
1.	The probability of imposs	ible event is		
	(a) 1	(b) 0	(c) 2	(d) 0.5
2.	In which probability distri	bution, Variance and Mea	n are equal?	
	(a) Binomial	(b) Poisson	(c) Geometric	(d) None of these
3.	If two random variables X	and <i>Y</i> are independent, the	nen covariance is	
	(a) θ	(b) 1	(c) 0	(d) λ
4.	If $X=Y$ then correlation co	pefficient between them is		
	(a) 0	(b) ∞	(c) 1	(d) ± 1
5.	The sum of two independe	ent Poisson process is		
	(a) poisson process		(b) marcov process	
	(c) random process		(d) stationary	
6.	A Non-Null Persistent and	d Aperiodic state is called		
	(a) Return state	(b) Irreducible	(c) Ergodic	(d) Recurrent
7.	$R_{XX}(\tau)$ is an	_ function of $ au$		
	(a) positive	(b) 1	(c) even	(d) odd
8.	If $R_{xy}(\tau) = \mu_X \times \mu_Y$ then .	X(t) and $Y(t)$ are called		
	(a) Independent	(b) Orthogonal	(c) Stationary	(d) none of these

9.	Α	is a functional relationship between the input $X(t)$ and the output $Y(t)$					
	(a) system	(b) process	(c) functional	(d) stationary		
10.	Colo	uted Noise means a no	ise that is				

(b) not white

PART - B (5 x
$$2 = 10 \text{ Marks}$$
)

(c) coloured

(d) none of these

- 11. If a Random variable *X* has the moment generating function $M_x(t) = \frac{2}{2-t}$. Determine the variance of *X*.
- 12. Define covariance.

(a) white

- 13. Outline discrete random process. Give an example for it.
- 14. State Winear-Khinchine theorem.
- 15. Describe a linear system.

PART - C (5 x
$$16 = 80 \text{ Marks}$$
)

- 16. (a) (i) In a bolt factory machines *A*, *B*, *C* manufacture respectively 25%, 35% and 40% of the total. Of their total output 5%, 4% and 2% are defective bolts. A bolt is drawn at random from the product and is found to be defective. What are the probabilities that it was manufactured by machines *A*, *B* and *C*? (8)
 - (ii) Deduce the moment generating function of exponential distribution and hence find its mean and variance. (8)

Or

(b) A random variable X has the following probability function

Value of x	0	1	2	3	4
$P\left(x\right)$	k	3 <i>k</i>	5 <i>k</i>	7 <i>k</i>	9 <i>k</i>

Find the value of k, P(x < 3) and distribution function of x.

17. (a) (i) The joint probability density function of a bivariate random variable (X, Y) is

$$f(x, y) = \begin{cases} k(x + y), 0 < x < 2, 0 < y < 2 \\ 0, elsewhere \end{cases}$$
. Find (1) the value of k (2) the marginal probability density of x and y (3) x and y independent. (8)

(ii) The two lines of regression are 8x - 10y + 66 = 0, 40x - 18y - 214 = 0. The variance of x is 9. Evaluate the mean values of x and y and the Correlation coefficient between x and y.

(16)

(b) The joint probability distribution of *X* and *Y* is given below:

YX	-1	1
0	1/8	3/8
1	2/8	2/8

Find the correlation coefficient between *X* and *Y*.

(16)

(8)

(8)

18. (a) Generalize the postulates of a Poisson process and derive the probability distribution for the Poisson Process. Also Show that the sum of two independent Poisson process is again a Poisson process. (16)

Or

- (b) (i) Explain the classification of random process.
 - (ii) The transition probability of a Markov chain $\{X\}$, $n = 1, 2, 3, \ldots$, having 3 states

1, 2 and 3
$$P = \begin{pmatrix} 0.1 & 0.5 & 0.4 \\ 0.6 & 0.2 & 0.2 \\ 0.3 & 0.4 & 0.3 \end{pmatrix}$$
 and the initial distribution is $p^{(0)} = (0.7, 0.2, 0.1)$.

Find (1)
$$P\{X_2 = 3\}$$
 and (2) $P = \{X_3 = 2, X_2 = 3, X_1 = 3, X_0 = 2\}$. (8)

- 19. (a) (i) Define cross-correlation function and write the properties of cross-correlation function. (8)
 - (ii) State and Prove Wiener-Khinchine theorem.

Or

(b) If the power spectral density of a WSS process is given by $S(\omega) = \begin{cases} \frac{b}{a} (a - |\omega|), & \text{for } |\omega| \le a \\ 0, & \text{for } |\omega| > a \end{cases}$

Find the autocorrelation function of the process.

(16)

20. (a) If $\{X(t)\}\$ is a WSS process and if $y(t) = \int_{-\infty}^{\infty} h(u)X(t-u)du$ then Prove that

(i)
$$R_{XY}(\tau) = R_{XX}(\tau) * h(-\tau)$$

(ii)
$$R_{yy}(\tau) = R_{xy}(\tau) * h(\tau)$$

(iii)
$$S_{xy}(\omega) = S_{xx}(\omega)H^*(\omega)$$

(iv)
$$S_{yy}(\omega) = S_{xx}(\omega) |H(\omega)|^2$$
 (16)

- (b) (i) The input to a time- invariant, stable linear system is a WSS process, Enumerate that the output will also be a WSS process. (8)
 - (ii) If X(t) is a band limited process such that $S_{xx}(\omega) = 0$, $|\omega| > \sigma$, then formulate $2[R_{xx}(0) R_{xx}(\tau)] \le \sigma^2 \tau^2 R_{xx}(0)$. (8)

4