.=					
Reg. No.:					

Question Paper Code: 50408

B.E. / B.Tech. DEGREE EXAMINATION, MAY 2017

Fourth Semester

	Elec	etronics and Instrume	entation Enginee	ring				
	15UEC	423 - COMMUNIC <i>A</i>	ATION ENGINE	EERING				
		(Regulation	n 2015)					
Duration: Three hours				Maximum: 100 Marks				
		Answer ALL	Questions					
		PART A - (5 x 1	= 5 Marks)					
1.	Carson's rule gives the appropriate minimum bandwidth required for angle mode wave and is given by							
	(a) BW= $2(f_m*n)Hz$	(b) BW= $2\Delta f$	(c) BW= $2f_m$	(d) BW= $2(f_m\Delta + f_m)Hz$				
2.	2. The digits of the binary representation of the code number are transmitted as puls. Hence the system of transmission is called							
	(a) PAM	(b) PCM	(c) PWM	(d) DM				
3.	If the minimum Hamming distance defining the error control capability of the code is 5, then the error control capability provides							
	(a) Double error cor(c) Single error corr		(b) Single error detection(d) Error cannot be detected					
4.	Latency is low in							
	(a) TDM	(b) TDM and FDM	(c) FDM	(d) None of these				
5.	MEO satellites operate a	at						
	(a) 1.2GHz -1.66GH	łz	(b) 2GHz-18GHz					

(c) Greater than 10 GHz

PART - B (5 x 3 = 15 Marks)

(d) Greater than 20 GHz

6. Draw the spectrum of AM signal and write its expressions.

8.	Sta	te information capacity theorem.	
9.	Des	scribe the efficiency of TDMA.	
10.	ind	Silica optical fibre with a core diameter of 80µ m large enough has a core refraex of 1.5 and cladding refractive index of 1.47. Determine the critical angidence, NA and the acceptance angle of the fibre in air.	
		PART - C (5 x $16 = 80 \text{ Marks}$)	
11.	(a)	Explain in detail the Armstrong method of FM generation and compare NBFN WBFM.	A and (16)
		Or	
	(b)	Give details on AM transmitter and AM receiver.	(16)
12.	(a)	Explain the working of Delta modulation signals with neat diagrams. suggestions to correct the limitations of DM techniques.	Give (16)
		Or	
	(b)	Explain MSK and GMSK with block diagrams.	(16)
13.	(a)	With neat block diagrams and example describe in detail about linear block and convolutional codes.	codes (16)
		Or	
	(b)	Explain source coding techniques types with example. What are different type codes? Give details.	oes of (16)
14.	(a)	With neat diagrams explain CDMA techniques and give its applications.	(16)
		Or	
	(b)	Explain TDMA along with its features.	(16)
15.	(a)	Briefly describe optical sources and detectors.	(16)
		Or	
	(b)	Explain the multiple access techniques used in satellite communications.	(16)

7. Compare PAM, PWM and PPM.