(
L	,

Reg. No. :

Question Paper Code: 52U02

M.E. DEGREE EXAMINATION, MAY 2018

Second Semester

Structural Engineering

15PSE202 - STEEL STRUCTURES

(Regulation 2015)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions

PART - A (5 x 1=5 Marks)

1.	When the columns carrying heavy loads, which type of bases are used			CO1- R	
	(a) Column	(b) Simple	(c) Slab	(d) Gusset	t
2.	type of cor	nnection used to restrained	the end rotation.		CO2 -U
	(a) Semi-Rigid	(b) Rigid	(c) Simple	(d) Frame	
3.	In case manually ope	rated crane the maximum c	leflection is		CO3- R
	(a) L/500	(b) L/300	(c) L/400	(d) L/750	
4.	Squash load ratio is d	lenoted by			CO4 -R
	(a) N/N _p	(b) N _p /N	(c) Z/Z_p	(d) Z/Z_e	
5.	The Euler critical load for a column with both ends hinged is C				CO5- R
	(a) $\pi^2 \text{ EI/L}^2$	(b) $2\pi^2 EI/L^2$	(c) $4\pi^2 \text{ EI/L}^2$	(d) 0.707 π^2	2 EI/L 2

$PART - B (5 \times 3 = 15 Marks)$

6.	Classify the types of moment resistant bases.	CO1-R
7.	Define moment – resistant connections and its types.	CO2-U
8.	What are the major components of an industrial buildings?	CO3-U
9.	Write the fundamental conditions for plastic analysis.	CO4-U
10.	What are cold-formed steel structures?	CO5-U

$$PART - C (5 \times 16 = 80 Marks)$$

11. (a) Explain the procedure for design of moment resisting base plates. CO1- U (16)

Or

- (b) Briefly explain the column bases and its types with neat sketch. CO1- U (16)
- 12. (a) Design the stiffened seat connection for a beam ISMB 350 CO2- App (16) transmitting a factored end reaction 320kN to a column ISHB300.Use 20 mm diameter boltsof 4.6 grade, take Fe410 $(f_y = 250 \text{ N/mm}^2)$ grade of steel

Or

- (b) Design welded seat angle connection between a beam ISMB 300 CO2- App (16) and a column ISHB 200 for a factored end reaction of beam 100 kN, assuming Fe410 grade of steel ($f_y = 250$ Mpa) and site welding.
- 13. (a) A roof truss shed is to be built in Lucknow for an industry. The CO3-U (16) size of shed is 24m x 40m. The height of building is 12m at the eves. Determine the basic wind pressure.

Or

- (b) A power plant structure having maximum dimension more than CO3-U (16) 60m is proposed to be built on downhill side near Dehradun. The height of the hill is 400m with a slope of 1 in 3. If the location is 250m from the crest of the hill on downward slope, and its eve board is at a height of 9m, determine the design wind pressure.
- 14. (a) Design the continuous beam with the ultimate load as shown in CO4 Ana (16) figure. Provide uniform cross-section.

Or

(b) Design the continuous beam with the service load as shown in the CO4 - Ana (16) fig. The load factor may be assumed as 2. Provide a uniform cross section throughout the beam.

15. (a) Compute the allowable load on the light gauge steel beam as CO4 - App (16) shown below.

- Or
- (b) Determine the allowable load per meter on the beam as shown CO5-App (16) below. Also, determine the deflection at the allowable load. The length of the column is 3.1m. The two sections are joined together by spot welding. The steel has a yield point of 235 N/mm2. Take $E = 2 \times 10^5 N/mm^2$.

52U02