С

Question Paper Code: 51U03

Reg. No. :

M.E. DEGREE EXAMINATION, MAY 2018

First Semester

Structural Engineering

15PSE103 - THEORY OF ELASTICITY AND PLASTICITY

(Regulation 2015)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions

PART - A $(5 \times 1 = 5 \text{ Marks})$

1.	The unit of modulus of elasticity is same as those of		CO1- R
	(a) Stress, strain and pressure	(b) Stress, force and modulus of rigidity	
	(c) Strain, force and pressure	(d) Stress, pressure and modulus of rigid	lity
2.	The solution of 2D problems may be obta "φ" known as	ained by introducing a function	CO2 -U
	(a) Airy's stress function	(b) Potential function	
	(c) Stress function	(d) None of these	
3.	Rayleigh Ritz method is based on the principle of		CO3- U
	(a) Law of conservation of energy	(b) Law of conservation of momentum	n
	(c) All of the above	(d) None of the above	
4.	The equation for torsion of prismatic bar (a) $\nabla^2 \phi = 0$	of non-circular cross section is (b) $\nabla^2 \phi = -2G\theta$	CO4 -R
	(c) $\nabla^2 \phi = -2K\theta$	(d) None of these	
5.	Von-Mises yield criteria is based upon	theory	CO5- U
	(a) Distortion Energy	(b) Maximum Strain	
	(c) Maximum shear stress	(d) Maximum Principal strain	

6.	Define Hooke's law.	CO1-U
7.	Give the orthogonal trajectories of the curve.	CO2-U
8.	Give the complex torsion function.	CO3-U
9.	State the principle of potential energy.	CO4-U
10.	What are residual stresses in plastic bending?	CO5-U

11. (a) The stress field in a body is given by $\Sigma x=0.005z$; $\gamma xy=0.003xy$, CO1- App (16) $\Sigma y=0.001x$; $\gamma yz=-0.001xz$, $\Sigma z=-0.002xy$; $\gamma zx=0.001y$. Check whether it is a compatible strain field.

Or

- (b) The state of strain at a point is given by $\Sigma x=0.001$, $\Sigma y=-0.003$, CO1- App (16) $\Sigma z=0.002$, $\gamma xy=0.001$, $\gamma yz=0.0005$, $\gamma xz=0.002$. Determine the strain invariants and the principal strains.
- 12. (a) Derive the deflection equation for bending a simply supported CO2- Ana (16) beam uniformly loaded over the entire span in terms of Cartesian coordinates.

Or

- (b) Derive the two-dimensional bi-harmonic equation in terms of CO2- App (16) Cartesian coordinates.
- 13. (a) Derive the torque equation of a prismatic bar subjected to thrust T, CO3-App (16) according to St.Venant's theory.

Or

- (b) Derive the torsion equation of thin-walled hollow section. CO3-App (16)
- 14. (a) Derive the expression for deflection of a rectangular plate by the CO4 -App (16) principle of virtual work.

Or

(b) Derive the expression for deflection of a cantilever beam by CO4-App (16) Rayleigh's method.

15. (a) Discuss in detail the various theories of failure normally adopted to CO5 -App (16) find the yield criteria.

Or

(b) What are the theories of failures explain in detail with neat CO5-U (16) sketches.