Reg. No. :

Maximum: 100 Marks

Question Paper Code: 51025

M.E. DEGREE EXAMINATION, MAY 2018

First Semester

Structural Engineering

15PMA125 - APPLIED MATHEMATICS FOR STRUCTURAL ENGINEERING

(Regulation 2015)

Duration: Three hours

Answer ALL Questions

PART A - $(5 \times 1 = 5 \text{ Marks})$

1. $F(e^{-x^2/2}) =$

(a) $e^{s^2/2}$	(b) $e^{-x^2/2}$	(c) $e^{-s^2/2}$	(d) $e^{x^2/2}$

- 2. For one point Gaussian Quadrature the sampling point is at _____
 - (a) $\xi = 0$ (b) $\xi = 2$ (c) $\xi = 3$ (d) $\xi = 1$
- 3. Suppose 'f' is independent of 'y' then the solution of Euler's equation is
 - (a) $\frac{\partial F}{\partial y'} = c$ (b) $\frac{\partial F}{\partial y} = c$ (c) $\frac{\partial F}{\partial x} = c$ (d) $\frac{\partial F}{\partial x'} = c$

4. To find the smallest eigen values of the matrix then use

- (a) Faddeev-Leverrier Method (b) Power method
- (c) Rayley-Ritz method (d) Approximation Method
- 5. Angle between the regression lines are parallel then _____
 - (a) $\theta = 0$ (b) $\theta = \frac{\pi}{2}$ (c) $\theta = \frac{\pi}{4}$ (d) $\theta = \pi$

PART - B (5 x 3 = 15 Marks)

- 6. Define laplace transform of unit step function and find its Laplace transform.
- 7. Define Rayleigh quotient of a Hermitian matrix.
- 8. If y is independent of y, then give the reduced form of the Euler's equation.
- 9. Find the largest eigen value of $\begin{bmatrix} 4 & 1 \\ 1 & 3 \end{bmatrix}$ by Power method.
- 10. What are maximum likelihood estimators?

PART - C (5 x
$$16 = 80$$
 Marks)

11. (a) A string is stretched and fixed between two fixed points (0, 0) and (1, 0). Motion is initiated by displacing the string in the form $u = sin\left(\frac{\pi x}{l}\right)$ and released from rest at time t=0.Find the displacement of any point on the string at any time t. (16)

Or

(b) Solve the following IBVP using the Laplace transform technique

PDE:
$$u_t = u_{xx}$$
, $0 < x < 1$, $t > 0$
BCs: $u(0, t) = 1$, $u(1, t) = 1$, $t > 0$
ICs: $u(x, 0) = 1 + \sin \pi x$, $0 < x < 1$. (16)

- 12. (a) (i) By relaxation method, solve 12 x + y + z = 31, 2x + 8y z = 24, 3x + 4y + 10 z = 58.
 - (ii) Solve the equation by Choleski method 4x + 6y + 8z = 0, 6x + 34y + 52z = -160, 8x + 52y + 129z = -452. (8)

(b) (i) Evaluate
$$\int_{1}^{2} \frac{dx}{1+x^{3}}$$
 by Gaussian three point formula. (8)

(ii) Evaluate
$$\int_{1}^{22} \frac{dxdy}{x+y}$$
 by Gaussian quadrature formula. (8)

51025

(8)

13. (a) (i) By applying Ritz method, find the extremal of $I[y(x)] = \int_{0}^{1} (y'^{2} + y^{2}) dx$ with

$$y(0) = 0, y(1) = 1.$$
 (8)

(ii) Find the plane curve of a fixed perimeter and maximum area. (8)

Or

(b) Show that the curve which extremizes the functional I = $\int_{0}^{\frac{\pi}{4}} (y^{11^{2}} - y^{2} + x^{2}) dx$ under the

conditions
$$y(0) = 0$$
, $y'(0) = 1$, $y(\frac{\pi}{4}) = y'(\frac{\pi}{4}) = \frac{1}{\sqrt{2}}$. (16)

14. (a) Find the resolvent of the matrix $A = \begin{pmatrix} -2 & -2 & -4 \\ 2 & 3 & 2 \\ 3 & 2 & 5 \end{pmatrix}$ by Faddeev-Leverrier method.

(16)

Or

(b) Use Faddeev-Leverrier method to find the characteristic polynomial and inverse of the

matrix
$$A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & 1 \\ 1 & -1 & 2 \end{bmatrix}$$
 (16)

15. (a) (i) Fit a parabola $y = a + bx + cx^2$ to the following data by the method of least squares

X:
 2
 4
 6
 8
 10

 Y:

$$3.07$$
 12.85
 31.47
 57.38
 91.29
 (8)

(ii) Estimate α and β for the distribution defined by

$$f(x; \alpha, \beta) = \frac{\beta^{\alpha}}{I(x)} x^{\alpha-1} e^{-\beta x}, \quad 0 \le x \le \infty$$
 by the method of moments. (8)

(b) Find the maximum likelihood estimate for the parameter λ of a Poisson distribution on the basis of a sample of size n. Also find its variance. Show that the sample mean \overline{x} is sufficient for estimating the parameter λ of the Poisson distribution.

(16)