Reg. No. :

Question Paper Code: 51005

Ph.D COURSE WORK EXAMINATION, MAY 2018

Elective

Course Work

15PPH105 – PHYSICOCHEMICAL METHODS FOR CHARACTERIZATION OF NANOMATERIALS

(Regulation 2015)

Duration: Three hours Maximum: 100 Marks Answer ALL Questions PART - A $(5 \times 20 = 100 \text{ Marks})$ 1. (a) With Scherer formula using X-Ray powder diffraction method, CO1- U (20)how will you determine lattice parameter, structure and particle size of a given nanomaterials. Or (b) Principle, block diagram and working of single crystal diffraction CO1-U (20)techniques. 2. (a) Discuss the principle and instrumentation of Thermogravimetry CO2-U (20)analysis for nanostructured samples. Or (b) Explain differential scanning calorimetric method to analyze the CO2-U (20)crystalline nature of a given material. 3. Discuss the principle instrumentation and applications of HRTEM CO3- U (a) (20)and atom probe field ion microscopy.

	(b)	(i) Explain X-ray characterization technique used for elemental analysis of nanomaterials using Energy Dispersive Analysis X-ray Spectroscopy	CO3- U	(10)
		(ii) How will you correct the errors occur during qualitative analysis study of nanomaterial sample using X-ray spectrometer.	CO3- U	(10)
4.	(a)	Discuss Raman spectroscopy and also few applications of Coherent Anti-stokes Raman Spectroscopy.	CO4- Ana	(20)
		Or		
	(b)	Discuss briefly the characterization technique using NMR spectroscopy and its applications.	CO4- Ana	(20)
5.	(a)	(i) Give the principles of nanoindentation.	CO5- U	(10)
		(ii) Explain the mechanical properties of materials in small dimensions.	CO5- U	(10)
		Or		
	(b)	(i) What is the principle behind Nanoindentation technique to study the mechanical properties of the nanomaterials?	CO5- U	(10)
		(ii) Discuss the mechanical properties of materials in nano dimension.	CO5- U	(10)