Question Paper Code: 47702

B.E. / B.Tech. DEGREE EXAMINATION, MAY 2018

Seventh Semester

Mechanical Engineering

14UME702 - FINITE ELEMENT ANALYSIS

(Regulation 2014)

Duration: Three hours

(a) Sub parametric

Maximum: 100 Marks

(d) None

Answer ALL Questions

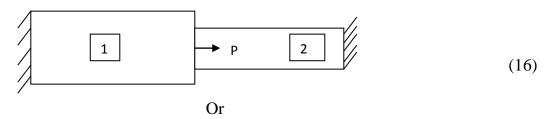
PART A - (10 x 1 = 10 Marks)

1.	Primary variable in FEM structural analysis is							
	(a) Displacement	(b) Force	(c) Stress	(d) Strain				
2.	The accuracy of FEM r	esults can be impro	oved by the ord	er of the polynomial				
	(a) Decreasing	(b) Increasing	(c) keeping consta	ant (d) None				
3.	When the aspect ratio increases, the accuracy of the solution							
	(a) Increases		(b) Decreases					
	(c) Neither increase	es nor decreases	(d) None					
4.	4. When there are less geometric nodes than shape function nodes then the element is called							
	(a)1	(b)2	(c)3	(d) 0				
5. When there are less geometric nodes than shape function nodes then the element is called								

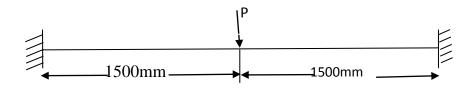
(b) Super parametric

(c) Iso parametric

6. When thin plate is subjected to loading in its own plane only, the condition is called								
(a) Plane stres	s (b) Plane st	train	(c) Axi-symmetric	(d) General				
7. The global stiffness matrix is a singular matrix because its determinant is equal to								
(a) 1	(b) Zero	(c) 2	(d) More than one					
8. The solution by FEM is								
(a) Always exact			(b) mostly approximate					
(c) Sometimes exact			(d) never exact					
9. The boundary condition which in terms of the field variables is known as								
(a) Primary	(b) Secondary		(c) Natural	(d) Essential				
10. Thermal conductivity Kx=Ky=Kz in case of								
(a) Isotropic material			(b) Orthotropic material					
(c) Anisotropic material			(d) Homogenous material					
PART - B (5 x $2 = 10$ Marks)								


- 11. State the properties of stiffness matrix.
- 12. Mention the basic steps of Rayleigh Ritz method.
- 13. State the properties of stiffness matrix.
- 14. State the two methods for solving transient vibration problems.
- 15. Mention two natural boundary conditions as applied to thermal problems.

PART - C (
$$5 \times 16 = 80$$
 Marks)


16. (a) Explain the various steps involved in finite element method. (16)

Or

(b) A bar of length L and uniform cross section of A is clamped at one end and left the other end and it is subjected to a uniform axial load of P at the free end. Calculate the displacement and stress in the bar using two terms of polynominal. (16) 17. (a) An axial of P= 200kN is acting at the junction. Find the nodal displacement at the junction point and stresses in each element for the bar system as shown in Take $E_1=70$ GPa, $A_1=2400$ mm², $L_1=300$ mm, $E_2=200$ GPa, $A_2=600$ mm² and $L_2=400$ mm.

(b) A concentrated load P=50KN is applied at the center of a fixed beam of length 3m,depth 200mm and width 120mm. Calculate the deflection and slope at the midpoint. Assume E=200GPa.

- 18. (a) A four noded rectangular element of length 2mm and height 1mm determine(i) Jacobian matrix
 - (ii) Strain-displacement matrix
 - (iii) Element stresses. Taking E=200GPa, Poisson's ratio=0.25, Nodal displacements as (0, 0, 0.003, 0.004, 0.006, 0.004, 0, 0) with local coordinates of (0, 0). (16)

Or

- (b) (i) Evaluate the integral $\cos(\pi x/2)$ dx by applying 3 point Gaussian approach with limit of -1 to +1. (8)
 - (ii) Evaluate the integral e^{-x} dx by applying 3 point Gaussian approach with limit of
 - -1 to +1. (8)
- 19. (a) A cantilever bar of length 400mm and cross sectional area of 600mm^2 . Determine the natural frequencies of longitudinal vibration using two elements of equal length. Take E=2X10⁵N/mm², ρ =0.8X10⁻⁴N/mm³. (16)

- Or
- (b) A simply supported beam of both end hinged supported has length of 1m and cross sectional area of 30cm².Determine the natural frequency by taking two elements with lumped mass condition. Take E=2X10¹¹N/mm² and density as 7800kg/m³. (16)
- 20. (a) A steel rod of diameter 2cm, length of 5cm and thermal conductivity of 50W/m°C is exposed at one end to a constant temperature of 320°C. The other end is in ambient air of temperature 20°C with a convective coefficient of 100W/m²°C. Determine the temperature at the midpoint of the rod. (16)

(b) The motion of fluid particles in aduct are given by ${}^{t}x1 = -5 + \sqrt{(25+10^{0}x_{1} + (0x_{1})^{2} + 4t)}$ Calculate the velocities and accelerations of the particles. Express your results in the (16) Legrangians form ${}^{t}\dot{u}_{1} = f_{1} ({}^{0}x_{1},t), {}^{t}\ddot{u}_{1} = f_{2}({}^{0}x^{1},t).$