Reg. No. :

Question Paper Code: 52003

B.E. / B.Tech. DEGREE EXAMINATION, MAY 2018

Second Semester							
	Mechanical Engineering						
	15UPH203 – MATERIAL SCIENCE						
	(Common to Chemical Engineering)						
	(Regulation 2015)						
Duration: Three hours Maximu			Maximum: 100 Marks				
	PART A - (10 x 1 = 10 Marks)						
1.	At $T = 0K$, the energy levels located above Fermi energy E_F are CO1-1						
	(a) partially filled	(b) empty	(c) filled	(d) none of these			
2.	Ionic polarization			CO1- R			
	(a) decreases with increase in temperature						
	(b) is independent of temperature						
	(c) increases with temperature						
	(d) first increases and then decreases with temperature						
3.	. If a semiconductor has energy band gap of 1.9eV, then its emitted CO2-I energy will lie in						
	(a) visible region		(b) UV region				
	(c) IR region		(d) invisible regior	1			

4.	The direction of Hall	voltage is		CC	02 -R	
	(a) parallel to applied	electric field				
	(b) perpendicular to applied magnetic field					
	(b) perpendicular to be	oth applied electric and	d magnetic field			
	(d) perpendicular to a	pplied electric field				
5.	Water is a	substance.		CC)3 -R	
	(a) paramagnetic		(b) ferromagnetic			
	(c) diamagnetic		(d) anti - ferromagnetic			
6.	SQUID works on the	principle of		CC)3- R	
	(a) macroscopic quant	um interference				
	(b) microscopic classi	cal interference				
	(c) microscopic quantum interference					
	(d) macroscopic classical interference					
7.	. Metallic glasses are prepared by rapid solidification of the liquid at the rates approaching a million degrees			CC	04 -R	
	(a) per minute	(b) per second	(c) per hour	(d) per day		
8.	High conducting nature	re of CNT is due to		CC	04 -R	
	(a) more electrons	(b) nanoporosity	(c) microporosity	(d) defects		
9.	Fatigue fracture occur	S		CC)5 -R	
	(a) when materials are subjected to cyclic loading					
	(b) when materials are subjected to low temperature					
	(c) when materials are subjected to high temperature					
	(d) when materials are subjected to compressive stress					

10.	Which of the following is not a thermo dynamical function?				C	O5 -R	
	(a) e	enthalpy	(b) work done	(c) Gibb's energy	(d) ir	nternal energy	
PART - B (5 x 2= 10 Marks)							
11.	State Wiedemann Franz law. CO						01 -R
12.	Distinguish between intrinsic and extrinsic semiconductors.					С	02 -R
13.	Show that superconductor is a perfect diamagnet.					C	03 -R
14.	Differentiate top down and bottom up method of nanoparticle synthesis.					04 -R	
15.	What do you mean by entropy?CO5 -					05 -R	
			PART – C (5	5 x 16= 80Marks)			
16.	(a)	expression for in structure using L	y internal field in diele iternal field experience orentz method. Deduc e expression obtained t	ed by an atom in a cubi e Clausius- Mosotti	ic	CO1 -App	(16)
			Or				
	(b)	(i) Outline the di Conductivity.	fferences between elec	ctrical and thermal		CO1 -App	(4)
		(ii) At $T = 0K$, a	all the levels above Fer	rmi energy E _F are vaca	ınt —	CO1 -App	(8)
		Justify this s	statement using Fermi	distribution function			
		(iii) Discuss also T > 0K	o the condition for the	above at a temperature	e	CO1- App	(4)
17.	(a)		Fect? Obtain an expres density and electronic		ent in	CO2 -App	(16)
	Or						
	(b)	•	tion in an intrinsic sem	-	n for	CO2 -Ana	(16)
18.	(a)	(i) Classify ferro	magnetic material base	ed on their spin.		CO3 -Ana	(8)
		(ii) Distinguish b	between hard and soft	magnetic materials		CO3 -Ana	(8)

	(b)	(i) Distinguish type I and type II superconductors	CO3 -Ana	(12
		(ii) Why do we prefer type II superconductor for making permanent magnets?	CO3 -Ana	(4)
19.	(a)	What are metallic glasses? How are they prepared? Mention its properties and applications.	CO4 -U	(16)
		Or		
	(b)	Nanomaterials have greater surface area to volume ratio – Justify Describe any one method of synthesizing nanomaterials.	CO4- Ana	(16)
20.	(a)	(i) What is creep in metals? Draw a typical creep curve and explain the three stages of creep.	CO5 -U	(10)
		(ii) Explain the factors affecting creep.	CO5 -U	(6)
	(b)	(i) Explain the working of Carnot's heat engine using Carnot's cycle. Obtain an expression for its efficiency when a perfect gas is a working substance.	CO5- U	(12)
		(ii) Calculate the efficiency of a Carnot's engine working	CO5 -U	(4)

(ii) Calculate the efficiency of a Carnot's engine working **CO5 -U** (4) between 400 K and 300 K.