Reg. No. :

Question Paper Code: 54023

B.E./B.Tech. DEGREE EXAMINATION, MAY 2018

Fourth Semester

Mechanical Engineering 15UMA423 - STATISTICS AND NUMERICAL METHODS (Regulation 2015)

(Statistical tables may be permitted)

Duration: Three hours

Maximum: 100 Marks

PART A - (10 x 1 = 10 Marks)

1.	Choose the variab	ole t-distribution ra	ange from		CO1-U
	(a) $-\infty$ to ∞	(b) 0 to ∞	(c) 0 <i>to</i> 1	(d) None of the a	bove
2.	The distribution of	of χ^2 depends on the function of χ^2 depends on the function of the func	he		CO1- E
	(a) observed frequ	uencies	(b) degrees of freedom	1	
	(c) expected frequ	uencies	(d) none of these		
3.	Mean square betw	ween column mear	1 =		СО2- Е
	(a) $SSE/c - 1$	(b) <i>SSE</i> / <i>n</i> - <i>c</i>	(c) $SSC/r - 1$	(d) <i>SSC/c</i> - 1	
4.	Latin square are r	nost widely used i	n the field of		CO2- U
	(a) agriculture	(b) industry	(c) medicine	(d) zoology	
5.	What is the order the multiplicity o	of convergence of f the root is one?	f Newton-Raphson method if		СО3- Е
	(a) 2	(b) 1	(c) 0	(d) None of the	above

A

6.	The pow Ei	ver met gen val	hod wi	ll work	satisfa	ctorily only if A has an	СО3- Е
	(a) domin	nant			(b)) smallest	
	(c) eigen	vector			(d)) characteristic quation	
7.	Newton'	s forwa	rd interp	polation	formul	a used only forintervals	CO4- R
	(a) consta	ant	(b) va	ariable	(c)) equal	(d) unequal
8.	Find the	second	divided	differe	nce tabl	e value for the following data:	CO4- R
		Х	2	5	10		
		Y	5	29	109		
	(a) 2.5		(b) 3.	.5	(c)) 1	(d) 0
9.	Simpson	's 3/8 rd	Rule is	used on	ly wher	the number of sub intervals is	CO5- R
	(a) odd		(b) ev	ven	(c)) any number	(d) multiple of 3
10.	Trapezoi	dal Rul	e is used	d only v	when the	e number of sub intervals is	CO5- R
	(a) any n	umber	(b) ev	ven	(c)) odd	(d) multiple of 3
				PA	ART – E	B (5 x 2= 10Marks)	
11.	Define S	tudent's	s test for	r differe	ence of 1	means of two samples.	CO1-R
12.	Explain t	CO2- Ana					
13.	3. Find an iterative formula to find $\frac{1}{N}$ where N is a real number.						
14.	State Ne	wton's	forward	l differe	ence for	mula by using operator method.	CO4- R
15.	State Sin	npson's	one-thi	rd rule.			CO5- R
]	PART –	- C (5 x 16= 80Marks)	

16. (a) (i) The sales manager of a large company conducted a sample CO1-E (8) survey in states A and B taking 400 samples in each case. The results were in the following table. Test whether the average sales in the same in the 2 states at 1% level

Average Sales	State A	State B
Mean	Rs. 2500	Rs. 2200
S.D	Rs. 400	Rs. 550

(ii) A group of 10 rats fed on diet A and another group of 8 rats CO1- E(8) fed on diet B, recorded the following increase in weight(gms)

Diet A	5	6	8	1	12	4	3	9	6	10
Diet B	2	3	6	8	10	1	2	8		

Does it show superiority of Diet A over Diet B.

Or

(b) (i)1000 students at college level were graded according to their CO1-E (8)
I.Q and their economic conditions. What conclusion can you draw from the following data;

Economic	I.Q. Level				
conditions	High	Low			
Rich	460	140			
Poor	240	160			

(ii) The following data gives the number of aircraft accidents CO1-E (8) that occurred during the various days of a week. Find whether the accidents are uniformly distributed over the week.

Days:	Sun	Mon	Tue	Wed	Thu	Fri	Sat
No. of.	14	16	8	12	11	9	14
accidents:							

17. (a) A variable trial was conducted on what with 4 varieties in a CO2- App (16) Latin Square Design. The plan of the experiment and the per plot yield are given below:

С	25	В	23	A	20	D	20
А	19	D	19	С	21	В	18
В	19	А	14	D	17	С	20
D	17	С	20	В	21	А	15

3

(b) A set of data involving four "four tropical feed stuffs A,B,C,D" CO2- App (16) tried on 20 chicks is given below. All the twenty chicks are treated alike in all respects excepts the feeding treatments and each feeding treatment is given to 5 chicks. Analyze the data. Weight gain of baby chicks fed on different feeding materials composed of tropical feed stuffs.

						Total T_i		
А	55	49	42	21	52	219		
В	61	112	30	89	63	355		
С	42	97	81	95	92	407		
D	169	137	169	85	154	714		
Grand total G=1695								

- 18. (a) (i)Using Newton's iterative formula for finding \sqrt{N} where N is a CO3-App (8) positive real number. Hence evaluate $\sqrt{142}$.
 - (ii)Using the Gauss-Jordan method solve the following CO3-App (8) equations 10x + y + z = 12;

2x + 10y + z = 13; x + y + 5z = 7.

Or

- (b) (i) Using Gauss Seidel method, solve the equations CO3-App (8) 4x + 2y + z = 14x + 5y - z = 10; x + y + 8z = 20.
 - (ii) Find the numerically largest eigen value of CO3-App (8)

$$A = \begin{bmatrix} 5 & 0 & 1 \\ 0 & -2 & 0 \\ 1 & 0 & 5 \end{bmatrix}$$
 and the Corresponding eigen vector.

19. (a) (i) Using Lagrange interpolation formula find f(10) given that CO4- Ana (8) f(5)=12, f(6)=13, f(9)=14, f(11)=16.

(ii) Find f'(3) and f''(3) for the following data:

(8)

x	3	3.2	3.4	3.6	3.8	4
f(x)	-14	-10.032	-5.296	-0.256	6.672	14

Or

(b) (i) Using Newton's divided difference formula find f(x) and f(6) CO4- App (8) from the following date:

x	1	2	7	8
f(x)	1	5	5	4

(ii) Fit the cubic spline for the data CO4- App Hence evaluate y(1.5) given that $y_0'' = y_2'' = 0$.

Х	1	2	3
Y	-6	-1	16

20. (a) (i) Evaluate CO5- E (8)

 $I = \int_0^{\frac{1}{2}} \frac{x}{\sin x} dx$ correct to 3 decimal places using Romberg's method

(ii) Evaluate CO5- E (8)

 $\int_0^1 \frac{1}{1+x^2} dx$, using Trapezoidal rule with h=0.2. Hence determine the value of π .

Or

$$\int_{4}^{4.4} \int_{2}^{2.6} \frac{dydx}{xy}$$

(ii) Apply Gauss three point formula to evaluate CO5- E (8)

$$\int_{1}^{2} \frac{1}{1+x^{3}} \, \mathrm{d}x \, .$$