A		Reg. No. :				
		Question Paper Co	de: 55704			
	В.	E. / B.Tech. DEGREE EXAM	INATION, MAY 2018	3		
		Fifth Semest	ter			
		Mechanical Engi	neering			
		15UME504 - OPERATIO	NS RESEARCH			
		(Regulation 20)15)			
Duration: Three hours Maximum: 100 Marks						
		PART A - (10 x 1 =	10 Marks)			
1						
1.	Operations Resea	rcn (OR), which is a very power	ful tool for	COI -R		
	(a) Research	(b) Decision – Making	(c) Operations	(d) None of the above		
2.	The value of M	in the Big M method is assume	ed to be	CO1 -R		
	(a) Zero	(b) Negative	(c) Very small	(d)Very large		
3.	The problems of dealt by using	concerning number of origins	s and destinations are	cO2- R		
	(a) Transportation	on model	(b) Two phase me	ethod		
	(c) Simple meth	od	(d) Linear progra	m		
4.	Which of the fol	lowing method is used to find	shortest route?	CO2 -R		
	(a) Travelling sa	lesman problem	(b) Simplex meth	od		
	(c) Transportation	on problem	(d) Assignment p	roblem		
5.	CPM is a			CO3 -R		
	(a) Critical path	method	(b) Critical path management			
	(c) Critical proje	ect method	(d) Critical project	ct management		

6.	In the project network, dummy activities and events are represented by				
	(a) Line and Circle		(b) Circle and Arrow		
	(c) Line and Arrow		(d) Dotted line and Circle		
7.	Which of the following i	s an indirect inventory?		CO4- R	
	(a) Production inventory		(b) Finished goods inventor	ry	
	(c) Buffer inventories		(d) MRO inventory		
8.	Which of the following parts or car parts	model finds its applicat	tions in electrical bulbs, TV	CO4- R	
	(a) Replacement model		(b) Inventory model		
	(c) Queuing model		(d) Assignment model		
9.	Queuing theory was deve	eloped by		CO5- R	
	(a) Kendall	(b) A.K.Erlang	(c) Molins	(d) Hungarien	
10.	Identify the situation wh	ere game theory can be ap	oplied	CO5- R	
	(a) Condition of uncertai	nty	(b) Condition of risk		
	(c) Condition of certaint	y	(d) Condition of conflict		
		PART – B (5 x 2= 10N	Aarks)		
11.	Define Operations Resea	urch (OR).		CO1- R	
12.	Write the methods available to find out starting solution in transportation algorithm.				
13.	Distinguish between PERT and CPM.				
14.	Identify the situations where replacement of item is necessary.				
15.	List the three major constituents of a queuing system				
		PART – C (5 x 16	= 80Marks)		
16.	(a) (i) Describe the st	teps to be followed in	formulation of Linear CO	1- App (6)	

Programming Problems (LPP).

(ii) Solve the following L.P. problem by graphical method. CO1 - App (10) Maximize $Z = 2x_1 + x_2$, subject to $x_1 + 2x_2 \le 10$, $x_1 + x_2 \le 6$, $x_1 - x_2 \le 2$, $x_1 - 2x_2 \le 1$ $x_1, x_2 \ge 0$. Or (b) Use simplex method to solve the following problem. CO1- App (16)

- Maximize $Z = 2x_1 + 5x_2$, subject to $x_1 + 4x_2 \le 24$, $3x_1 + x_2 \le 21$, $x_1 + x_2 \le 9$, $x_1 + x_2 \ge 0$
- 17. (a) A product is produced by four factories A,B,C and D. The unit CO2 -App (16) production cost in them are Rs.2, Rs.3, Rs.1 and Rs.5 respectively. Their production capacities are: factory A 50 units, B -70 units, C 30 units and D 50 units. These factories supply the product to four stores, demands of which are 25, 35, 105 and 20 units respectively. Unit transportation cost in rupees from each factory to each store is given in the table below.

			Stores					
		1	1 2 3 4					
ŝ	Α	2	4	6	11			
orie	В	10	8	7	5			
acto	С	13	3	9	12			
H	D	4	6	8	3			

Determine the extent of deliveries from each of the factories to each of the stores so that the total production and transportation cost is minimum.

Or

(b) A manufacturer of complex electronic equipment has just received CO2 -Ana (16) a sizable contract and plans to subcontract part of the job. He has solicited bids for 6 subcontracts from 3 firms. Each job is sufficiently large and any firm can take only one job. The table below shows the bids as well as the cost estimate (in lakhs of rupees) for doing the job internally. Not more than three jobs can be performed internally.

Find the optimal assignment that will result in minimum total cost.

Job Firm	1	2	3	4	5	6
1	44	67	41	53	48	64
2	46	69	40	45	45	68
3	43	73	37	51	44	62
Internal	50	65	35	50	46	63

18.

CO3- Ana (16)

4-9

(a)	A Pr	Project schedule has the following characteristics :								
		Activity	1-2	1-3	2-4	3-4	3-5			

, , , , , , , , , , , , , , , , , , ,						
Time (weeks)	4	1	1	1	6	5
Activity	5-6	5-7	6-8	7-8	8-10	9-10
Time (weeks)	4	8	1	2	5	7

(i) Construct the network.

(ii) Compute E and L for each event, and

(iii) Find the critical path.

Or

(b) A civil engineering firm has to bid for the construction of a dam. CO3-Ana (16) The activities and their time estimates are given below.

Activity	Optimistic	Most likely	Pessimistic
1-2	14	17	25
2-3	14	18	21
2-4	13	15	18
2-8	16	19	28
3-4 (dummy)	0	0	0
3-5	15	18	27
4-6	13	17	21
5-7 (dummy)	0	0	0
5-9	14	18	20
6-7 (dummy)	0	0	0
6-8 (dummy)	0	0	0
7-9	16	20	41
8-9	14	16	22

The policy of the firm with respect to submitting bids is to bid the minimum amount that will provide a 95% of probability of at best breaking-even. The fixed costs for the project are eight lakhs and the variable costs are Rs.9,000 every day spent working on the project. The duration is in days and the costs are in rupees.

What amount should the firm bid under this policy? (You may perform the calculations on duration etc., up to two decimal places).

19. (a) (i) Explain the following terms in inventory management CO4- U (6)2. Shortage of cost 1. Carrying cost 3. Ordering cost (ii) ABC manufacturing company purchases 9,000 parts of a CO4 -U (10)machine for its annual requirement, ordering one month's usage at a time. Each part costs Rs.20. The ordering cost per order is Rs.15, and the carrying charges are 15% of the average inventory per year. You have been asked to suggest a more economical purchasing policy for the company. What advice would you offer and how much would it save the company per year?

Or

(b) The maintenance cost and resale value per year of a machine whose CO4 - Ana (16)

Year	1	2	3	4	5	6	7	8
Maintenance cost ₹	900	1200	1600	2100	2800	3700	4700	5900
Resale value ₹	4000	2000	1200	600	500	400	400	400

purchase price is Rs.7000 is given below.

When should the machine be replaced?

- 20. (a) A self service stores employs one cashier at its counter. Nine customers CO5 -U (16) arrive on an average every 5 minutes while the cashier can serve 10 customers in 5 minutes. Assuming Poisson distribution for arrival rate and exponential distribution for service time. Find
 - (i) Average number of customers in the system.
 - (ii) Average number of customers in the queue. (or) Average queue length.
 - (iii) Average time a customer spends in the system.

Average time a customer waits before being served.

Or

(b) Reduce the following game by dominance and find the game value. CO5- U (16)

		Player B				
		Ι	II	III	IV	
	Ι	3	2	4	0	
er A	II	3	4	2	4	
Jay	III	4	2	4	0	
	IV	0	4	0	8	