Reg. No. :

Question Paper Code: 55821

B.E. / B.Tech. DEGREE EXAMINATION, MAY 2018

Fifth Semester

Electronics and Instrumentation Engineering

15UIT521 – PROGRAMMING WITH DATA STRUCTURES

(Regulation 2015)

Duration: Three hours

Maximum: 100 Marks

PART A - $(5 \times 1 = 5 \text{ Marks})$

1.	Which one of the below mentioned is linear data structure?				
	(a) Queue		(b) Stack		
	(c) Arrays		(d) All the above		
2.	Which of the following concepts of OOPS means exposing only necessary information to client?				CO2- R
	(a) Encapsulation	(b) Abstraction	(c)Data hiding	(d) Data binding	
3.	Which data structure all at rear?	lows deleting data eleme	nts front and inserting		CO3- R
	(a)Stacks	(b) Queues	(c) Dequeues	(d) Linkede List	
4.	What must be the ideal	size of array if the heigh	t of tree is 'n'?		CO4 -R
	(a) 2^{n} -1	(b) n-1	(c) n	(d) 2n	
5.	The complexity of Bubble sort algorithm is				
	(a) O(n)	(b) $O(\log n)$	(c) $O(n^2)$	(d) O(n log	n)

PART - B (5 x 3 = 15 Marks)

6.	List	and define the two types of Polymorphism	CO1 -R				
7.	Dist	inguish between Call by Value and Call by Reference.	CO2- R				
8.	Wha	at are the operations of the stack?	CO3- R				
9.	Disc	cuss the three binary tree traversal algorithms with examples.	CO4- Ana				
10.	What do you mean by internal and external sorting?			CO5 -U			
		PART – C (5 x 16= 80Marks)					
11.	(a)	Explain in detail about Object Oriented programming concepts.	CO1 -U	(16)			
		Or					
	(b)	State the rules to be followed while overloading an operator. write a program to illustrate overloading.	CO1- U	(16)			
12.	(a)	Explain in detail about Types of Inheritance. Or	CO2 -U	(16)			
	(b)	Explain multiple catch statement with help of suitable C++ coding.	CO2 -U	(16)			
13.	(a)	 (i) Construct an expression tree for the expression a + b * c + (d * e + f) * g (ii) Write a function to delete the minimum element from a binary heap 	CO3- App CO3- U	(8) (8)			
	Or						
	(b)	Explain the Queue Model and list out its Applications.	CO3 -U	(16)			
14.	(a)	(i) Write routines to insert and delete a node from binary search tree.	CO4 -U	(8)			
		(ii) Draw a binary search tree for the following list60, 25, 75, 75, 50, 66, 33, 44. Trace the algorithm to delete the nodes 25, 75, 44 from the tree.	CO3- App	(8)			
		Or					
	(b)	Explain in detail about all pair shortest path problem with example.	CO4 -App	(16)			
15.	(a)	Discuss the Quick sort algorithm with an example.	CO5- U	(16)			

(b) Explain in detail about all pair shortest path problem with CO5-U (16) example.

#