Reg. No. :

Question Paper Code: 55804

B.E. / B.Tech. DEGREE EXAMINATION, MAY 2018

Fifth Semester

Information Technology

15UIT504 - ANALYSIS AND DESIGN OF ALGORITHMS

(Regulation 2015)

Duration: Three hours

Maximum: 100 Marks

PART A - $(5 \times 1 = 5 \text{ Marks})$

1.	Function g is a lower bound on function f if for all x.				
	(a) $g(x) \leq f(x)$	(b) $g(x) \ge f(x)$	(c) $g(x) = O(f)$	(d) $F(x) = \Omega(g)$	
2.	Scatter plots of fu shape.	unctions in $\Theta(n \ lg$	n) and $\Theta(n^2)$ will	have CO2- R	
	(a) Concave	(b) Linear	(c) Convex	(d) inComparable	
3.	The count denotes number of times of execution of statement is			CO3- R	
	(a) Frequency count	(b) Space count	(c) Time count	(d) Optimization	
4.	Knapsack is a(n)	problem		CO4 -R	
	(a) non-optimization		(b) optimization		
	(c) state-space search		(d) behavior-of-prog	gram	
5.	All NP-Complete problems are NP-hard but all NP-hard problems CO5 -R cannot be				
	(a) P	(b) NP	(c) NP – Hard	(d)NP- Complete	

PART - B $(5 \times 3 = 15 \text{ Marks})$

6.	Name the criteria used to identify the best algorithm.			
7.	Elucidate time complexities of bubble sort.	CO2- R		
8.	Write an algorithm to find the minimum cost spanning tree of an undirected, weighted graph.			
9.	Classify the application of backtracking.			
10.	Elaborate the real time application of the assignment problem?	CO5 -Ana		
	PART – C (5 x 16= 80Marks)			
11.	(a) Solve the following recurrence relation by masters' method. CO 1) $T(n)=4T(n/2)+n$ 2) $T(n)=2T(n/2)+n\log n$.	1 - App (16)		
	Or			

- (b) Analyze linear search for Best case, worst case and average case CO1- Ana (16) with an algorithm.
- 12. (a) For the following set of elements, Explain Binary Search With CO2 Ana (16) Analysis. 10,20,30,40,50,60,70.

Or

(b) Find the minimum cost path of Multi stage Graph using forward CO2 -Ana (16) approach and using backward approach of multistage Graph with algorithm.

13. (a) Elucidate the minimum spanning tree with the help of prim's CO3- App (16) algorithm and show the result for the given graph.

- (b) Show the result for the given graph by the use of dijikstra's CO3 -U (16) algorithm.
- 14. (a) Consider a set $A = \{1, 2, 5, 6, 8\}$ and d = 9. Solve it for obtaining CO4 -U (16) sum of subsets and draw a portion of state space tree.

Or

(b) Solve the following Graph Coloring Problem Using Backtracking CO4 - Ana (16) Technique.

- 15. (a) Elucidate NP-hard and NP complete problems with example. CO5- U (16) Or
 - (b) Give the non-deterministic algorithm for sorting elements in non CO5-U (16) decreasing order.