Reg. No.:					

Question Paper Code: 43602

B.E. / B.Tech. DEGREE EXAMINATION, MAY 2018

Third Semester

Instrumentation and Control Engineering

	14	4UIC302 – DIGI	TAL LOGIC CIRCUI	ΓS AND DESIGN		
			(Regulation 2014)			
Du	ration: Three hou		answer ALL Questions	Maximum: 10)0 Marks	
		PAR	$ATA - (10 \times 1 = 10 \text{ Mag})$	rks)		
1.	How many outpu	ats are on a BCD	decoder?			
	(a) 4	(b) 16	(c) 8	(d) 10		
2.	What are the syn	nbols used to rep	resent digits in the bin	ary number system?		
	(a) 0,1	(b) 0,1,2	(c) 0 through 8	(d) 1,2		
3.	What is ROM?					
	(a) repeat on	memory	(b) read o	n memory		
	(c) read only	memory	(d) repea	only memory		
4.	In PROM, we ca	n				
	•			(b) store and erase data once(d) store once and read once		
5.	Which type of ga	ate can be used to	add two bits?			
	(a) Ex-OR	(b) Ex-N	VOR (c) Ex-NA	AND (d) NOR		
6.	How many flipfl	ops are required	to build a binary coun	er that counts from 0 to	1023?	
	(a) 12	(b) 20	(c) 50	(d) 10		

7.	The next state variable	s in asynchronous so	equential circuits are called	d			
	(a) secondary varia(c) primary variable		(b) excitation variables(d) short term memory				
8.	In ASM, the decision be	ox is represented by	,				
	(a) circle	(b) oval	(c) diamond	(d) rectangle			
9.	Which of the following	logic family has the	e shortest propagation dela	y?			
	(a) CMOS	(b) NMOS	(c) ECL	(d) 74Sxx			
10.	In VHDL, the mode of	a port does not defin	ne:				
	(a) an input	(b) an output	(c) the type of the bit	(d) none of the above			
		PART - B (5	x 2 = 10 Marks)				
11.	List the different number	er systems?					
12.	2. Define fan in and fan out.						
13.	Compare combinationa	l and sequential circ	euits				
14.	What is race around con	ndition?					
15.	List the advantages of C	CMOS logic.					
		PART - C (5 x	x 16 = 80 Marks)				
16.	(a) Reduce the following	ng functions using I	ζ-map techniques.				
	· · · · · · · · · · · · · · · · · · ·	$= \sum_{n=1}^{\infty} m(0, 1, 2, 3, 5, 7)$ $= \prod_{n=1}^{\infty} M(0, 3, 4, 7, 8, 7)$	7, 8, 9, 11, 14) 10, 12, 14) + d (2, 6)	(8) (8)			
			Or				
	(b) Use Quine–Mc $f(a, b, c, d) = \sum_{a} m(a, b, c, d)$	cluskey method (0, 1, 2, 3, 8, 9).	d and simply the	following function, (16)			
17.	(a) Design and draw 4	bit binary to gray co	ode converter and explain.	(16)			
			Or				
	(b) Explain in detail ab	out PLA with a spe	cific example.	(16)			

18.	(a)	Design a four state down counter using T flip flop.	(16)
		Or	
	(b)	Construct a decade ripple counter using flip flops and explain.	(16)
19.	(a)	Draw the fundamental mode asynchronous circuit and explain in detail.	(16)
		Or	
	(b)	(i) What is the procedure for obtaining the transition table form the circuit of an asynchronous sequential circuit?	diagram of
		(ii) Discuss in detail the race conditions.	(8)
20.	(a)	Explain the various modeling methods used in VHDL with an example.	(16)
		Or	
	(b)	(i) Write VHDL code for a full sub tractor using logic Equation.	(8)
		(ii) Write a VHDL description of an S-R latch using a process.	(8)