A		Reg. No. :											
Question Paper Code: 53306													
B.E. / B.Tech. DEGREE EXAMINATION, MAY 2018													
	Third Semester												
	Electrical and Electronics Engineering												
	15UEE306 - DIGITAL LOGIC CIRCUITS												
		(Regula	tion	2015	5)								
Dura	ation: Three hours					N	laxii	num	: 100) Ma	rks		
		PART A - (10	x 1 =	= 10	Mar	ks)							
1.	The Gray code for decimal number 6 is equivalent to							CO	1- R				
	(a) 1100	(b) 1001	(c) 01	01				(d) 01	110		
2.	Convert the binary number 1001.0010 ₂ to decimal.							CO	1- R				
	(a) 90.125	(b) 9.125	()	c) 12	5				((d) 11	2.5		
3.	Which of the following expressions is in the form of product of sums form								CO2	2- R			
	(a) (A+B)(C+D)		(b) (A	B)+	(CD))						
	(c) AB(CD)		(d) Al	B+C	D							
4.	How many AND sexpression, $X = AB\overline{C} + A\overline{B}C + \overline{A}BC$	gates are required	to i	mple	men	t th	e B	oolea	an			CO	2- R
	(a) 1	(b) 2	(c) 3					((d) 4			
5.	On a master-slave flip-flop, when is the master enabled?									CO	3- R		
	(a) when the gate is LOW (b) when the gate is HIGH												
	(c) both of the above (d) nei					er of	the a	abov	e				

6.	A BCD counter is a		CO3- R					
	(a) binary counter	(b) full-modulus counter						
	(c) decade counter	(d) divide-by-10 counter						
7.	ASIC stands for:		CO4 -R					
	(a) advanced speed integrated circuit.							
	(b) advanced standard integrated circuit.							
	(c) application specific integrated circuit.							
	(d) application speedy integrated circuit							
8.	Use of additional logic circuits in POS and S	CO4 -R						
	(a) Static 0 hazards (b) Static 1 hazards	(c) Both a and b	(d) None of these					
9.	What is the basic difference between AHDL	CO5 -R						
	(a) ADHL is used in all PLD's.	(b) VHDL is used in all PL	LD					
	(c) ADHL is proprietary.	(d)VHDL is proprietary.						
10.	In VHDL, the mode of a port does not define	CO5- R						
	(a) an input.	(b) an output.						
	(c) both an input and an output.	(d) the type of the bit						
PART – B (5 x 2= 10Marks)								
11.	Reduce $A'B'C' + A'BC' + A'BC$.		CO1 -R					
12.	Write the design procedure for combinationa	CO2 -R						
13.	Define race around condition.	CO3 -U						
14.	What is programmable logic array?		CO4- R					

15. What are identifiers?

PART – C (5 x 16= 80Marks)

16. (a) Explain about the error detection and correction codes used in the CO1 -App (16) digital system while transmitting the binary information.

Or

- (b) (i) Explain Hamming code with an example. State its advantages CO1 App (16) over parity codes
 (ii) Design a TTL logic circuit for a 3-input NAND gate
- 17. (a) Simplify the Boolean function $F(w,x,y,z) = \sum m(0,1,2,4,5,6,8,9,12,13,14).$ CO2 -App (16)

Or

- (b) (i) Design an 8421 to gray code converter.
 (ii)Implement the Boolean function using 8:1 mux F (A, B, C, D)
 =A'BD'+ACD+B'CD+A'C'D.
- 18. (a) Using D-flip flop, design a synchronous counter which counts in CO3- Ana (16) the sequence 000, 001, 010, 011, 100, 101, 110, 111, 000.

Or

- (b) Design a sequence detector circuit, which detects three or more CO3- Ana (16) consecutive 1's in a string of bits coming through an input line.
 - (a) Find the state diagram.
 - (b) Determine the type of the circuit (Moore or Mealy model)
 - (c) Tabulate state (or transition) table of sequence detector.
 - (d) Implement the circuit using D flip flop.
- 19. (a) Design an asynchronous sequential circuit that has 2 inputs x2 CO4-U (16) and x1, and one output z. the output is to remain 0 as long as an X1 is 0. The first change in x2 that occurs while x1 is 1 will cause z to be 1. Z is to remain 1 until x1 returns to 0. Construct a state diagram and flow table. Determine the output equations.

(b)	(i) A combinational circuit is defined by the functions.	CO4 -Ana	(16)
	a. F1 (a, b, c) = $\sum m (3, 5, 6, 7)$		
	b. F2 (a, b, c) = $\sum m (0, 2, 4, 7)$		
	Implement the circuit with a PLA.		

- 20. (a) Explain the design of Register Transfer Level (RTL) in VHDL. CO5- U (16)
 - Or
 - (b) Analyze the design units for a general sequential circuit. Draw a CO5-U (16) circuit consisting of logic state circuits , Seq C and Logic combinational circuit C which generates output Y.