A		Reg. No. :											
		Question P	aper	Coc	le:5	533()4						
B.E. / B.Tech. DEGREE EXAMINATION, MAY 2018 Third Semester													
		Electrical and E	lectron	ics E	ngir	eerii	ng						
	1:	5UEE304 - POWER	SYS7	ГЕМ	GEN	IER.	ATIO	ON					
		(Reg	ulation	2015	5								
Duration: Three hours Maximum: 100 Mar						rks							
		Answei	r all qu	estio	ns								
		PART A - (2	10 x 1 =	= 10	Mar	ks)							
1.	In a regenerative cycle, feed water is heated by					CO	1- R						
	(a) heaters		(b) dı	raineo	d ste	am f	rom	turbi	ne				
	(c) exhaust gases		(d) A	ll of	the a	bove	e						
2.	The major use of the	Economiser is										CO	1- F
	(a) Heat up the inc exhaust steam	coming water with	(b) H	eat u	p the	e pul	veris	ed fi	uel b	y exl	haust	t	
	(c) Heat up the exhaust gases	incoming air by	(d) H	eat u	p the	e inco	omin	g wa	ater b	oy ex	haus	st gas	es.
3.	Out of the following diesel engines, the minimum air consumption per BHP will be in						CO2	2- R					
	(a) 4 stroke, mechan	ical injection	(b) 4	strok	e, ai	r inje	ectio	n					
	(c) 2 stroke, air injec	tion	(d) A	ll the	abo	ve							
4.	Combined cycle power plants are suitable for?								CO	2- F			
	(a) Base loads		(b) Pe	eak lo	bads								
	(c) Intermediate load	ls	(d) B	oth b	ase a	and p	beak	load	S				

Т

Т

Т

Т

5.	Moderator in nuclear plants is used to		CO3- R			
	(a) reduce temperature					
	(b) extract heat from nuclear reaction					
	(c) control the reaction					
	(d) cause collision with the fast moving	neutrons to reduce their speed				
6.	Control rods are made of		CO3- R			
	(a) U238	(b) graphite or barium				
	c) boron or cadmium	(d) lead				
7.	Which of the following is a disadvant energy sources?	age of most of the renewable	CO4 -R			
	(a) Highly polluting	(b) High waste disposal cost				
	(c) Unreliable supply	(d) High running cost				
8.	Which of the following power pla unpredictable or uncontrollable time	ants can generate power at ?	CO4 -R			
	(a) Tidal power plant	(b) Wind power plant				
	(c) Solar power plant	(d) Any of the above				
9.	Which of the following gases is the major contributor to global warming?					
	(a) Methane	(b) Hydrogen				
	(c) Nitrogen	(d) Carbon Dioxide				
10.	Load factor of a power station is defined as		CO5- R			
	(a) Maximum demand/average load	(b) average load x maximum demand				
	(c) average load / maximum demand	(d) average load x maximum demand x ba	ase load			
	$PART - B (5 \times 2 = 10 Marks)$					

- 11. Define super critical boilers.

CO1- R

12.	Define integrated gasification combined cycle (IGCC)?	CO2 -R
-----	---	--------

- 13. Mention the use of control rod in nuclear power station. CO3 -R
- 14. List the factor which determines the power from wind plant. CO4 -U
- 15. Define load factor of power plant.

$$PART - C (5 \times 16 = 80 Marks)$$

CO5 - R

16. (a) Explain with a neat sketch the working of a thermal electric CO1-App (16) power plant station and discuss the functions of major components in it. Also mention the advantages and limitations of thermal power plant.

Or

- (b) Explain with neat sketch the principle and operation of an CO1-App (16) Atmospheric classic Fluidized Bed Combustion (AFBC) system.
- 17. (a) Analyze the Otto, Diesel and dual cycle engine and compare its CO2- App (16) performance in details.

Or

- (b) Describe with neat diagram the principle of a gas turbine power CO2 -Ana (16) plant and the function of different components of the plant. Also discuss the advantages over a steam power plant
- 18. (a) Give a brief review of generation of electrical power by nuclear CO3- Ana (16) power plant with the help of neat block diagram?

Or

(b)	(i) Classify the different types of nuclear reactor.	CO3 -Ana	(10)
< - /			· · · /

- (ii) Write a short note on CANDU reactor. CO3 -Ana (6)
- 19. (a) Describe with neat sketch the construction, principle and CO4-U (16) operation of a hydro power plant and mention its advantages and disadvantages.

Or

	(b)	Write short notes on the following,	CO4 -Ana	(8)
		(i) Explain the basic solar PV system used for power generation		
		(ii) Explain in detail about the electric energy generation by tital power plant.	CO4 -Ana	(8)
20.	(a)	(i) Explain the different types of load distribution parameter	CO5 -U	(10)
		(ii) Write the significance of tariff also list the various types of	CO5- U	(6)
		tariff system followed in India.		
		Or		
	(b)	Explain the pollution control methods of coal based power plant.	CO5- U	(16)