A		Reg. No. :										
		Question Pa	apei	r Co	de:	54.	326	7				
	B.E. / B.Tech. DEGREE EXAMINATION. MAY 2018											
	Fourth Semester											
	Electronics and Communication Engineering											
	15UEE426- PRINCIPLE OF ELECTRICAL MACHINES											
		(Regula	tion	2015	5)							
Dura	ation: Three hours					Ν	laxin	num	: 100) Ma	rks	
		Answer AI	LLQ	uesti	ons							
		PART A - (10	x 1 =	= 10	Mar	ks)						
1.	Fleming's right hand rule	e is applicable to _			<u> </u>							CO1- F
	(a) Transformer (b)	b) DC generator	(c) D0	C mo	otor			((d) A	lterr	ator
2.	Which of the following motor?	load would be be	st dri	iven	by a	DC	com	pour	nd			CO1- I
	(a) Reciprocating pump		(1	b) Ce	entrif	fugal	pum	р				
	(c) Electric Locomotive		(d) Fa	an							
3.	A transformer transfers	·										CO2- F
	(a) Frequency (b)	o) Voltage	(c) Po	wer		(0	l) Vo	oltag	e an	d Cu	rrent
4.	The main purpose of	using core in a	trar	nsfor	mer	is t	0					CO2- I
	(a) Decrease iron losses											
	(b) Prevent eddy current	loss										
	(c) Eliminate magnetic h	ysteresis										

(d) Decrease reluctance of the common magnetic circuit

5.	The frame of an induction motor is made by	(CO3- R				
	(a) aluminium	(b) silicon steel					
	(c) closed grained cast iron	(d) bronze					
6.	The starting torque of a squirrel cage induct	(CO3- R				
	(a) very large	(b) very low					
	(c) slightly more than full load torque	(d) zero					
7.	Motor is usually employed in a	(CO4- R				
	(a) Squirrel cage induction	(b) Slip-ring induction					
	(c) Synchronous	(d) Commutator					
8.	While starting a synchronous motor its field	(CO4- R				
	(a) kept open	(b) short-circuited					
	(c) connected to a dc source	(d) none of the above					
9.	The wattage rating for a ceiling motor will b	(CO5- R				
	(a) 50 to 250 W (b) 250 TO 500 W	(c) 50 TO 150 W	(d) 10 TO 20) W			
10.	Stepper motors are mostly used for	(CO5- R				
	(a) High power requirements	(b) Control system applications					
	(c) Very high speed of operation	(d) Very low speed of ope	eration				
	PART – B (5 x	x 2= 10Marks)					
11.	What is the function of no-voltage release c	(CO1- R				
12.	Mention the difference between core and sh	(C O2- U				
13.	Draw the slip-torque characteristics of a thr	(CO3- U				
14.	What is hunting?	(CO4- R				
15.	Why single phase induction motor is not se	(CO5- U				
	PART – C (S	5 x 16= 80Marks)					
16.	(a) (i) Explain the construction and workin generator with neat diagram.	CO1- U	(10)				
	(ii) Derive an EMF equation of DC get	CO1- App	(6)				

		Or							
	(b)	(i) Develop the torque equation of a DC motor.	CO1- App	(6)					
		(ii) Explain with neat diagram, the working of three point starter for a DC motor.	CO1- U	(10)					
17.	(a)	(i) Explain the working principle of transformer.	CO2- U	(8)					
		(ii) Derive an EMF equation of a transformer and specify their parameters.	CO2- U	(8)					
		Or							
	(b)	(i) Draw and explain the approximate equivalent circuit of transformer referred to primary winding.	CO2-U	(6)					
		(ii) Explain the different types of three phase transformer Connections with their voltages and currents.	CO2-U	(10)					
18.	(a)	Explain the construction and principle of operation of three phase induction motor. Distinguish between squirrel cage rotor and slip ring rotor.	CO3- Ana	(16)					
	Or								
	(b)	(i) Explain with the help of a neat diagram, the working of a star- delta starter for an induction motor.	CO3- Ana	(10)					
		(ii) Derive the condition for maximum torque and obtain maximum torque.	CO3- Ana	(6)					
19.	(a)	(i) Explain the construction of an alternator.	CO4- U	(6)					
		(ii) Draw and explain the vector diagram of an alternator when it	CO4- U	(10)					
		is loaded with							
		1. UPF							
		2. Lagging PF							
		3.Leadiing PF							
		Or							

(b) Describe about any two method of starting a synchronous motor. CO4- Ana (16)

20.	(a)	What are the types of single phase induction motor? Explain any two in detail.	CO5- U	(16)
		Or		
(b)	(b)	(i) Explain the construction and working of permanent magnet synchronous motor.	CO5- U	(8)
		(ii) Explain the construction and working of switched reluctance motor.	CO5- U	(8)