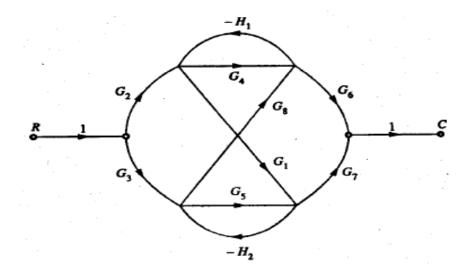

A		Reg. No. :							
Question Paper Code: 54303									
B.E. / B.Tech. DEGREE EXAMINATION, MAY 2018									
Fourth Semester									
Electrical and Electronics Engineering									
15UEE403- CONTROL SYSTEMS									
(Regulation 2015)									
Dur	Duration: Three hours Maximum: 100 Marks								
	PART A - $(10 \text{ x } 1 = 10 \text{ Marks})$								
1.	Loop which do not possess any common node are said to be CO1- R loops.								
	(a)) Forward gain	(b) Touching loops	(c) N	on touch	ing loops	s (d) Feedb	ack gain		
2.	Inelectri	ical signal is converted in to angular motion. CO1- F				CO1- R			
	(a)Series motor	(b) Generator	(c) Servon	notor	(d) Shunt	motor		
3.	Rise time is time taken for response to raise from CO2-								
	(a) 0 to 100%.	(b) 10 to 100%.	(c) Infinity	7	(d) Both a	and b		
4.							CO2- R		
	(a) t<∞.	(b) t>∞.	(c) t=∞.		(d) $t \rightarrow \infty$.			
5.	The Gain Cross Over Frequency is the frequency at which the phase of CO3- R						CO3- R		
	the open loop transfer function is								
	(a) 90°	(b) Greater than 180°	(c) Less th	an 180°	(d) 180°			

6.	Resonance Peak is the value of the magnitude of closed loop transfer function.								
	(a) Maximum	faximum (b) Minimum							
	(c) Zero		(d) None of the above						
7.	Location of roots on the imaginary axis makes the system : CO4								
	(a)Stable	(b) Unstable	(c) Marginally stable	(d) Linear					
8.	The characteristic $3S^4 + 10S^3 + 5S^2 + 2 =$	1	system is given as	CO4- R					
	(a) Stable	(b) Marginally stable	e (c) Linear	(d) Unstable					
9.	If $X(0)$ is initial valu	CO5- R							
	(a) $A e^{At} X(0)$	(b) $e^{At}X(0)$	(c) At $e^{At}X(0)$	(d) t $e^{At}X(0)$					
10.	The transfer function for the state variable representation $\overset{0}{X} = AX + BU$, Y = CX + DU is given by								
	$(a) D + C(sI - A)^{-1} B$		(b) $B(sI - A)^{-1}C + D$						
	(c) $D(sI - A)^{-1}B + C$		(d) $C(sI - A)^{-1}D + B$						
	PART – B (5 x 2= 10Marks)								
11.	Define transfer functi	CO1- R							
12.	What is rise time and	CO2- R							
13.	Define Gain margin.								
14.	State Routh stability criterion.								
15.	Define State and Stat	CO5- R							
	PART – C (5 x 16= 80Marks)								


$PART - C (5 \times 16 = 80 Marks)$

16. (a) Obtain the closed loop transfer function C(S)/R(S) of the system CO1- App (16) whose block diagram is shown in fig.

Or

(b) Obtain the overall gain of the system by using Mason's gain CO1- App (16) formula

17. (a) Derive an expression for the time response of an under damped CO2- App (16) second order when it is system subjected to unit step input.

Or

- (b) Determine the steady state error for a system having CO2- Ana (16) $G(S)H(S) = \frac{100}{S^2(1+0.05S)(S+2)} \text{ and input as } r(t) = t^2$
- 18. (a) For the following transfer function draw bode plot and obtain gain CO3- Ana (16) cross-over frequency.

$$G(S) = \frac{20}{S(1+3S)(1+4S)}$$

3

(b) The open loop transfer function of a unity feedback system is CO3- Ana (16) given by

 $G(S) = \frac{1}{S(S+1)(2S+1)}$. Sketch the polar plot and determine the gain margin and phase margin.

19. (a) Draw the Nyquist plot for the system whose open loop transfer CO4-U (16) function is $G(S)H(S) = \frac{K}{S(S+2)(S+10)}$. Determine the range of K for which closed loop system is stable.

Or

- (b) Explain the procedure for the design of the lag compensator based CO4- Ana (16) on frequency response approach using bode plot.
- 20. (a) Determine the canonical state model of the system, whose transfer CO5-U (16) function is $T(S) = \frac{2(S+5)}{(S+2)(S+3)(S+4)}$
 - (b) Evaluate the controllability and observability of the following state CO5-U (16) $\begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -2 & -3 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 10 \end{bmatrix} U$ model $Y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$