C

Reg. No. :										
------------	--	--	--	--	--	--	--	--	--	--

Question Paper Code: 53404

B.E./B.Tech. DEGREE EXAMINATION, MAY 2018

Third Semester

Electronics and Communication Engineering

15UEC304 - ELECTRONIC CIRCUITS

(Regulation 2015)

Duı	ration: Three hours		Maximum: 100 Marks					
		Answer All Q	uestions					
		PART A - (5x 1	= 5 Marks)					
1.	Which transistor bias circuit provides good Q-point stability with a single-polarity supply voltage?							
	(a) base bias		(b) collector-fee					
	(c) voltage-divider bias	(d) emitter bias						
2.	In a BJT, largest curren	t flow occurs			CO2- U			
	(a) in the emitter	(b) in the collector	(c) in the base	(d) through CE	3 junction			
3.	The frequency that is 1 octave above 5 kHz is							
	(a) 10kHz	(b) 1kHz	(c) 20kHz	(d) 100kHz				
4.	The maximum overall efficiency of a transformer coupled class-A amplifier is percent.							
	(a) 78.5	(b) 25	(c) 50	(d) 85				
5.	Negative feedback is advantage in							
	(a) amplifier	(b) oscillator	(c) inverter	(d) rectifier				

PART - B (5 x 3= 15Marks)

6. What are the requirements for biasing circuits? CO1-U 7. Mention two advantages which are specific to Darlington connection. CO2-U 8. Clarify how the number of stages in a multistage amplifier influences the cut-CO₃- U off frequency and bandwidth. What is cross-over distortion? How it can be eliminated? 9. CO4-U 10. Mention the applications of class C tuned amplifier. CO5-U $PART - C (5 \times 16 = 80 Marks)$ 11. (a) Consider a fixed bias transistor amplifier with collector resistor CO1-U (16) $R_C = 8 k\Omega$, load resistor $R_L = 24 k\Omega$ and bias voltage $V_{CC} = 24V$. Draw the DC load line and determine the optimum operating point. Also draw the AC load line. Or (b) List out the various bias compensation methods and explain them. CO1 -Ana (16)12. (a) Discuss in detail methods of increasing input impedance using CO2-U (16)Darlington connection. Or (b) (i) Draw the circuit diagram for an emitter coupled differential CO2-U (10)amplifier using BJTs. Describe common mode and differential mode of working. (ii) Determine the output voltage of a differential amplifier for the CO2 -U (6)input voltages of 300µV and 240 µV. The differential gain of the amplifier is 5000 and the value of the CMRR is i) 100 and ii) 10⁵. Derive the expression for frequency response of multistage CO3- App 13. (a) (16)amplifier Or (b) Explain the operation of high frequency common source FET CO3-U (16)

- amplifier with neat diagram. Derive the expression for i) voltage gain,
 - ii) Input admittance,
 - iii) Input capacitance and Output admittance.

- 14. (a) (i) Compare class A, class B and class C power amplifier in their CO4-Ana performance and efficiency. (8)
 - (ii) Find the value of supply voltage required to deliver 20W to a CO4-Ana (8) 50Ω load by an ideal class D amplifier.

Or

- (b) (i)Prove that the maximum efficiency for class A transformer CO4-App coupled power amplifier is 50%.
 - (ii) Draw the circuit of class B push-pull amplifier and discuss its CO4 -U (8) merits.
- 15. (a) Explain the Nyquist criterion for stability of feedback amplifiers. CO5- App (8)
 - (ii) A tank circuit contains an inductance of 1mH. Find out the CO5-E range of tuning capacitor value if the resonant frequency ranges from 540kHz to 1650kHz.

Or

(b) Explain the operation of class C tuned amplifier with neat circuit CO5- App diagram and waveform. Also derive the efficiency and mention the applications.