С		Reg. No. :											
								-					
		Question Pa	per	Co	de:	534	02						
	B.E./B.7	Fech. DEGREE EX	XAM	INA	TIO	N, N	IAY	201	8				
		Third	Seme	ester									
	Ele	ctronics and Comr	nuni	catio	n E	ngin	eering	g					
	15UEC302 -DIGITAL ELCTRONICS AND DESIGN												
		(Regula	tion	2015)								
Dur	ation: Three hours						N	Maxi	mun	n: 10	00 N	larks	5
		PART A - (5	5x 1 =	= 5 N	Iark	s)							
		Answer A	.ll Qı	iesti	ons								
1.	Which of following are known as universal gates? CO1- R						1- R						
	(a) NAND & NOR			(b) .	ANE) & (OR						
	(c) XOR & OR			(d)]	None	e of t	hese						
2.	2. What is the equivalent gray code for the binary code 111? CO2-						02-R						
	(a) 101	(b) 100			(c)) 000)		(d) 00	1		
3.	3. Let $k = 2^n$. A circuit is built by giving the output of an n-bit binary counter as CO3- R input to an n-to- 2^n bit decoder. This circuit is equivalent to a					8- R							
(a) k-bit binary up counter (b) k- bit binary down counter													
	(c) k-bit ring counter (d) k-bit Johnson counter												
4.	How many flip flops are	e needed for a sync	chron	ous	mod	-3 cc	ounter	r?				CO	4- R
	(a) 3 (b)	4		(c)	1			(0	ł) 2				

5.	Which of the following memories uses one transistor and one capacitor as							
	basic memory u							
	(a) SRAM	(d) None of the above						
	PART - B (5 x 3 = 15 Marks)							
6.	Prove that ABC +	CO1-Ana						

- 7. Define encoder and decoder CO2- U
- 8. What are the different types of shift registers? CO3- U
- 9. What are the steps for the design of asynchronous sequential circuit? CO4- U
- 10. Define RAM. Why RAMs are called as volatile? CO5- U

$$PART - C (5 \times 16 = 80 Marks)$$

11. (a) Minimize the following function using Quine McCluskey method CO1-App (16) & verify the result using K-map method $F(W, X, Y, Z) = \sum m(0,3,5,6,7,10,12,13) + \sum d(2,9,15)$

Or

(b) (i) Prove by perfect induction	CO1 -App	(8)
	(1) $(X + Y' + XY) (X + Y') (X'Y) = 0$		
	(2) ABC + ABC' + AB'C + A'BC = AB + AC + BC		
	(3) $A+A'B = A+B$ and		
	(4) A(A'+B) = AB		
	(ii) Draw the circuits of 2 input AND, OR, NOT, XNOR gates using NOR gate.	CO1 -App	(8)
12. (a	(i) Design a logic circuit that performs BCD to Excess-3 code conversion.	CO2 -Ana	(10)
	(ii) Discuss about parity generator and parity checker.	CO2 -Ana	(6)

	(b)	(i) Design half adder and full adder circuits.	CO2 -Ana	(8)
		(ii) Explain the operation of carry look-ahead adder with diagram.	CO2 -U	(8)
13.	(a)	(i) Draw the logic diagram of D-type edge triggered Flip Flop and explain its operation.	CO3- U	(8)
		(ii) Realize1) JK Flip Flop from SR Flip Flop	CO2 -Ana	(8)
		2) T Flip Flop from JK Flip Flop		
		Or		
	(b)	With neat sketches, explain briefly the working of a universal shift register.	CO3- U	(16)
14.	(a)	Design an asynchronous sequential circuit that has two inputs X_2 and X_1 and one output Z. When $X_1=0$, the output Z is 0. The first change in X_2 that occurs while X_1 is 1 will cause output Z to be 1. The output Z will remain until X_1 returns to 0.	CO4-Ana	(16)
		Or		
	(b)	Explain the various types of hazards in sequential circuit design and the methods to eliminate them. Give suitable examples.	CO4 -U	(16)

- 15. (a) With a neat circuit diagram explain the operation of the CO5-U (16) following.
 - (i) TTL NAND Logic
 - (ii) CMOS NAND Logic.

Or

(b)	Design using PAL the following Boolean functions:	CO5-U	(16)
	(i) $W(A, B, C, D) = \Sigma(2, 12, 13)$		
	(<i>ii</i>) $X(A, B, C, D) = \Sigma(7, 8, 9, 10, 11, 12, 13, 14, 15)$		
	(<i>iii</i>) $Y(A, B, C, D) = \Sigma(0, 2, 3, 4, 5, 6, 7, 8, 10, 11, 15)$		

3

 $(iv) Z(A, B, C, D) = \Sigma(1, 2, 8, 12, 13)$