A		Reg. No. :]
				•								•	1
Question Paper Code: 56421													
B.E./B.Tech. DEGREE EXAMINATION, MAY 2018													
Sixth Semester Electrical and Electronics Engineering													
15UEC621 – SIGNAL PROCESSING													
(Common to Electronics and Instrumentation Engineering)													
		(Regulat	ion 2	2015)									
Dur	ation: Three hours							М	axin	num:	100	Mar	ks
		Answer AI	LL qu	iestic	ons								
		PART A - (10	x 1 =	= 10 N	Mark	s)							
1.	The process of conversion of continuous time signal into discrete CO1- R time signal is known as							- R					
	(a) aliasing	(b) sampling	(c) co	nvol	utior	1	(d) pr	ewar	ping		
2.	The system $y(n) = \sin(x(n))$ is, CO1-U								- U				
	(a) stable	(b) BIBO stable	(c) un	stab	le		(d) ma	argin	ally	stab	le
3.	The z transform is a,										(CO2	- R
	(a) finite series		(b) in	finite	e pov	ver se	eries	5				
	(c) geometric series		(d) bc	oth a	and	с						
4.	The ROC of a system is the CO2-							- R					
	(a) range of z for which the z transform converges(b) range of frequency for which the z transform exists(c) range of frequency for which the signal gets transmitted												

(d) range in which the signal is free of noise

5.	DIT algorithm divides the sequence into									
	(a) Positive and negat	ive values	(b) Upper higher and	1						
	(c) Even and odd sam	ples	(d) Small and large sa							
6.	In N-point DFT of I aliasing in frequency		e value of N to avoid	CO3- R						
	(a) N≠L	(b) N≤L	(c) N=L	(d) N≥L						
7.	In which window see adjusted by varying the		CO4- R							
	(a) Hamming	(b) Hanning	(c) Bartlett	(d) Kaiser						
8.	The zeros of the Butte		CO4- U							
	(a) left half of s-plane	(b)origin	(c)infinity	(d) right half	of s-plane					
9.	In DSP processors, which among the following maintains the CO5- track of addresses of input data as well as the coefficients stored in data and program memories?									
	(a) data Address Gen	erators (DAGs)	(b) program sequen	ces						
	(c) barrel shifter		(d) MAC							
10.	The addressing mode	e addressing mode which makes use of in-direction pointers is								
	a) Indirect addressing	mode	b) Index addressing	mode						
	c) Relative addressing	ddressing mode d) Offset addressing mode								
PART - B (5 x 2= 10 Marks)										
11.	What is linear time invariant system?									
12.	State the final value the		CO2- R							
13.	Draw the basic butterfly diagram for Radix 2 DIT FFT.									
14.	What is Gibbs phenomenon?									
15.	How is fast computation achieved in DSPs.									

$$PART - C (5 \times 16 = 80 Marks)$$

16. (a) A discrete time system is represented by the following CO1-App (16) difference equation in which x(n) is input and y(n) is output.

$$y(n) = y(n-1) - nx(n) + 2x(n-1) + 3x(n-2)$$

Examine whether the system is linear, shift invariant and causal. In each case, justify your answer.

Or

- (b) Identify whether the following signals are energy or power CO1-App (16) signals.
 - i) $x(n) = \left(\frac{3}{2}\right)^n u(n)$ ii) x(n) = u(n)
- 17. (a) (i) Determine the z transform of the following discrete time CO2- App (8) signals.

 $x(n) = \sin(\Omega_o nT).$

(ii) Find the impulse response of the system described by the CO2- App (8) difference equation y(n) - 3y(n-1) - 4y(n-2) = x(n) + 2x(n-1)

- (b) (i) Find the convolution of two sequences CO2- App (8) $x(n) = \{-1,1,2,-2\} and h(n) = \{0.5,1,-1,2,6,4\}.$
 - (ii) Explain the following properties of DTFT: Periodicity, Time CO2- App (8) shifting Frequency shifting and conjugation.
- 18. (a) (i) Examine the DFT of the sequence, $x(n) = \{0,1,2,1\}$ using CO3- App (6) Decimation in Time (DIT) algorithm and Sketch the magnitude and phase spectrum.

(ii) Compute the DFT of the sequence $x(n) = (-1)^n$ for the CO3-App (10) period N=8.

Or

(b) Calculate the DFT of a sequence $x(n) = \{1,2,3,4,4,3,2,1\}$ CO3- App (16) using Decimation in Frequency (DIF) algorithm and Sketch the magnitude and phase spectrum.

19. (a) Design and draw the structure of a linear phase FIR high pass CO4-App (16) filter using hamming window by taking 7 samples with cut off frequency of 0.8π radians/sample.

Or

(b) Design a Butterworth digital IIR filter using impulse invariant CO4-App (16) transformation method by taking T=1 second, for the following specifications.

$$\begin{array}{ll} 0.707 \leq |H\{e^{jw}\}| \leq 1 & 0 \leq w \leq 0.3\pi \\ |H\{e^{jw}\}| \leq 0.2 & 0.75\pi \leq w \leq \pi \end{array}$$

Realize the filter using Direct form-II structure.

20. (a) Explain the architecture of digital signal processor with a neat CO5-U (16) diagram.

Or

(b) Describe about the common addressing modes used in digital CO5-U (16) signal processor.