Reg. No. :		Reg. No.:										
------------	--	-----------	--	--	--	--	--	--	--	--	--	--

Question Paper Code: 46403

B.E. / B.Tech. DEGREE EXAMINATION, MAY 2018

Sixth Semester

Electronics and Communication Engineering

	14UEC	603 - ANTENN	IA AND WAVE PROF	PAGATION
		(Re	egulation 2014)	
Dυ	ration: Three hours			Maximum: 100 Marks
		Answ	er ALL Questions	
		PART A	$-(10 \times 1 = 10 \text{ Marks})$	
1.	Effective aperture is	always	than Physical apertur	e.
	(a) higher	(b) O	(c) Elliptio	cal (d) Circular
2.	Consider a lossless a the load power radia		•	If 1 mW of power is fed to it,
	(a) 4mW	(b) 1mW	(c) 7mW	(d) 1/4mW
3.	A dipole antenna o efficiency of the ante	_	s an equivalent total l	oss resistance of 1.5Ω . The
	(a) 0.89159%	(b) 8.91599	% (c) 89.159%	(d) 891.59%
4.	The array that does r	not produce side	lobes excepting princip	pal lobe is
	(a) Broad side a	rray	(b) End fire ar	ray
	(c) Yagi-Uda ar	ray	(d) Binomial a	nray
5.	Corrugations in coni	cal horn antenna	a is provided to improve	2
	(a) Directivity		(b) Impedance	e matching

(d) Bandwidth

(c) Beam symmetry

6.	The rel	ation between sl	ot and dipole impeda	inces is	
	(a)	$Z_S Z_d = Zi^2/4$		$(b) \ Z_S Z_d = Zi^2/2$	
	(c)	$Z_S Z_d = Zd^2/4$		(d) $Z_S Z_d = Z d^2/2$	
7.	A 13 dB (ap)	_	ıda antenna array	produces a maximum	gain of
	(a)	5	(b) 9	(c) 14	(d) 3
8.	For a H	Hertz dipole anter	nna, the Half Pore Be	eam Width (HPBW) in th	e E-Plane is
	(a)	360°	(b) 180°	(c) 90°	(d) 45°
9.	_		uency transmitted up e reflecting layer is	ward is received back aft	er a period of 5ms.
	(a)	h=CT/2	(b) h=2CT	(c) h=T/2C	(d) h=C/2T
10.		is not a type	of fading.		
	(a)	Polarization	(b) Skip	(c) Interence	(d) None of these
			PART - B (5 x 2	2 = 10 Marks)	
11.	Write t	he principle of p	attern multiplication.		
12.	Differe	entiate broadside	array and end fire ar	ray.	
13.	Define	a Hertzian dipol	e.		
14.		on the relation be c dipole array.	tween the length 'l' a	and spacing 'S' of adjace	nt elements of log
15.	What a	re the factors tha	at affect the propagat	ion of radio waves?	
			PART - C (5 x 10	6 = 80 Marks)	
16.	(a) Illu	ustrate reciprocit	y principle with rega	rds to antenna in detail w	ith neat sketch (16)
			Or		
	(b) (i)	power gain of		antennas operating at 10 ted power is 1 watt, find	

a is $\lambda/2$, if it's $R_{L=}$ 1.5 Ω find R_r and its efficiency. (8)		
atted with short dipole and also explain power radiated and ort dipole. (16)	7. (a)	17.
Or		
of 4 isotropic elements spaced λ /2 apart and with equal lot the radiation pattern in polar coordinates. (16)	(b)	
icro strip patch with dimensions W and L over a single frequency is 10 GHz. The dielectric constant of the height of the substrate is 0.127 cm. Determine the physical he patch taking into account fringing fields. (16)	8. (a)	18.
Or		
of Babinet's principle on complementary antennas in (16)	(b)	
chanism of a 2 element Yagi-Uda Antenna. Derive its gain (16)	9. (a)	19.
Or		
c dipole array with 7 db gain and a 4 to 1 bandwidth. Given that 7 db gain corresponds to α =15°, K=1.2 and S/ λ =0.15. (8)	(b)	
Directivity measurements in antenna. (8)		
luencing the propagation of radio waves. Compare and (16)	0. (a)	20.
Or		
the ionosphere, the electron density at night is about I MUF is 1.5 times the critical frequency for a transmission mpute the following: (i) Critical frequency (ii) Relative hase constant (iv) Wave impedance (v) Wave velocity. (16)	(b)	