		Reg. No. :								
		Question F	Paper Co	ode: 4	9418					
	B.E./E	.Tech. DEGREE	EXAMIN	ATION	, APRII	_ 201	8			
			Elective							
		Electronics and C	Communic	ation Er	ngineeri	ng				
	14UE	C918- RADAR	AND NA	VIGAT	TIONA	L AI	DS			
		(Reg	ulation 20	14)						
Dur	ation: Three hours	PART A - ((Answe	$(10 \times 1 = 1)$ or all Quest	0 Marks	s)	Maxi	imur	n: 10)0 N	larks
1.	Radar is a contraction	of the words								C01-
	(a)Receiver detection	and ranging	(b)F	Radio de	etection	and	rangi	ing		
	(c)Radio detection and	d receiver	(d)F	Radio de	emodula	tion	and	rangi	ng	
2.	An example of probab	oility Density func	ction is							CO1-
	(a) Gaussian	(b) Gamma	(c) l	curoda				(d) L	apla	ce
3.	The formula for Dopp	ler frequency shif	t f _r is							CO2-]
	(a) =2 v_r / λ ; v_r rela	tive velocity λ	wavelengtl	1						
	(b) =4 v_r / λ ; v_r rela	tive velocity λ v	vavelength	1						
	(c) =6 v_r / λ ; v_r rela	tive velocity λ v	vavelength	L						
	(d) = $8 v_r / \lambda$; v_r related	ive velocity λ w	vavelength							
4.	For Moving Target Indication (MTI) signal processing a							CO2- F		
	(a) Bessel filter is use	d	(b) E	lutterwc	orth filte	er is ı	ised			
	(c) Elliptic filter is use	ed	(d) T	ransver	sal filte	r is u	sed			

5.	One of the following is used as oscillator in RADAR transmitter					
	(a) travelling wave tube	(b) magnetron	(c) klystron	(d) triode		
6.	The method of scanning mechanically	CO3- R				
	(a) steering using log periodic array antennas (b) steering using Binomial array ar					
	(c) steered phased array	sitic array antennas				
7.	Very high frequency Or	nni directional Rang	e operates at	CO4- R		
	(a)108-136 MHz ((b) 108-136 KHz	(c) 108-136 GHz	(d) 108-136 THz		
8.	Adcock Direction finder	rs eliminates		CO4- R		
	(a) polarization Errors		(b) abnormal propagation			
	(c) site errors		(d) phase angle errors			
9.	The abbreviation name	TACAN is		CO5- R		
	(a) Tactical air navigatio	on	(b) Tactical atmosphere n	avigation		
	(c) Troposphere air navi	igation	(d) Troposphere atmosphere navigation			
10.	One of the component o	f Inertial Navigation	n system is	CO5- R		
	(a) goniometer ((b)microphone	(c)loud speaker	(d)Accelerometer		
PART – B (5 x 2= 10Marks)						
11.	Define minimum detect	able signal.		CO1- R		
12.	What is meant by stagge	ered-prf-MTI		CO2- R		

13. Differentiate false alarm and missed detection.CO3- R

14.	Wha	at are various errors in Direction Finding.	CO4- R						
15.	Exp	lain the method of transit system used in Satellite based navigation	CO5- R						
		PART – C (5 x 16= 80Marks)							
16.	(a)	(i) What are the different range of frequencies that a radar can operate and give their applications?	CO1- App	(10)					
		(ii) Draw the block diagram of RADAR and explain the basic building blocks	CO1- U	(6)					
	Or								
	(b)	Explain how the system losses will affect on the Radar range	CO1- App	(16)					
17.	(a)	Explain in detail digital MTI Processing	CO2- App	(16)					
		Or							
	(b)	Describe in detail about the conical scan and sequential lobing	CO2- U	(16)					
18.	(a)	Explain in detail about Parabolic reflector antennas .Analyze f/D ratio of the same .	CO3- Ana	(16)					
	Or								
	(b)	Discuss in detail about Linear Beam Power tube (klystron Amplifier).	CO3- U	(16)					
19.	(a)	(i) Explain and analyse the principle of Loop antenna with suitable equations.	CO4- Ana	(10)					
		(ii) Explain in detail about VOR receiving equipment	CO4- U	(6)					
Or									
	(b)	(i) With equations explain the principle of Hyperbolic system of Navigation.	CO4- Ana	(10)					
		(ii) Describe the operation of LORAN with diagrams indicating frequencies used.	CO4- U	(6)					

20.	(a)	Explain how distance measuring equipment works. Describe the set up and operation of DME.	CO5- U	(16)
	(b)	Or (i) Describe in detail an Instrument Landing system.	CO5- U	(10)
		(ii) Briefly explain a ground controlled approach system.	CO5- U	(6)