

(a) 0.498 (b) 0.394 (c) 0.239 (d) 0.25

5.	Differences of two independent Poisson processes is			CO3-R	
	(a) not Poisson process	(b) a Gaussian process			
	(c) a Binomial process	(d) a sine wave process			
6.	The random process that is not stationary in any sense is called				
	(a) strongly stationary process	(b) evolutionary process			
	(c) uniform process	(d) Weak process			
7.	Auto correlation function is maximum at $\tau =$			CO4-R	
	(a) 0 (b) 2	(c) 1	(d) ∞		
8.	The spectral density function of a real random process is			CO4-R	
	(a) an odd function	(b) neither odd nor even functio	n		
	(c) an even function	(d) straight line function			
9.	The convolution form of the output	Y(t) of a linear time invariant		CO5-R	

(a) $\int_{-\infty}^{\infty} h(u) du$ (b) $\int_{-\infty}^{\infty} h(u) X(t-u) du$

system with the input X(t) and the system weighting function h(t)

$$(c)\int_{-\infty}^{\infty}h(u) y(t-u) du \qquad (d)\int_{-\infty}^{\infty}X(t-u) du$$

- 10. If the power spectral density of white noise is $\frac{N_0}{2}$, then its auto CO5-R correlation function
 - (a) $\frac{N_0}{2}\delta(\tau)$ (b) $2\delta(\tau)$ (c) $\frac{1}{2}\delta(\tau)$ (d) $\delta(\tau)$

$$PART - B (5 x 2 = 10 Marks)$$

11. Define Binomial distribution.

CO1-R

12. The following table gives the joint probability distribution of X and Y.

X Y	1	2	3
1	0.1	0.1	0.2
2	0.2	0.3	0.1

Compute the marginal probability mass functions of X & Y.

- 13. Define Wide sense stationary process.CO3-R
- 14. Find Mean of the random process X(t), CO4-E

where
$$R(\tau) = 16 + \frac{9}{1+16\tau^2}$$

15. Define a linear time invariant system.

$$PART - C (5 \times 16 = 80 Marks)$$

16. (a) (i) A random variable 'X' has the following probability function CO1-App (8)

Values of X	-2	-1	0	1	2	3
Probability P[X	0.1	K	0.2	2K	0.3	3K
= x]						

- 1) Determine the value of 'K'.
- 2) Find P[X < 2] and P[-2 < X < 2].
- 3) Find the cumulative distribution function of X.

(ii) The distribution function of the random variable X is given by CO1-App (8) F(x) = 1- (1 + x) e^{-x}, x ≥ 0. Find the density function, mean and variance of X.

Or

(b) (i) Derive the moment generating function of Poisson distribution CO1-App (8) and hence obtain its mean and variance.

(ii) The marks obtained by a number of students in a certain CO1-App (8) subject are approximately normally distributed with mean 65 and standard deviation 5. What is the probability that a student scores above 75?

CO5-R

СО2-Е

17.	(a)	(i) The two dimensional random variable (X,Y) has the joint	CO2-App	(8)	
		density function			
		f(x, y) = (2x + y)k, $x = 0,1,2$; $y = 0,1,2$			
		(1) Find the value of k.			
		(2) Find the marginal distribution of X and Y.			
		(3) Find the conditional distribution of Y for $X=x$.			
		(ii) The joint probability density function of random variable X		(8)	
		and Y is given by			
		$f(x,y) = 4xye^{-(x^2+y^2)}, x > 0, y > 0.$			
		Check whether X and Y are independent or not			
Or					
	(b)	(i) If the joint probability density function of (X,Y) is given by	CO2-Ana	(8)	
		$f(x, y) = x + y; 0 \le x \le 1; 0 \le y \le 1$, find the probability			
		density function of $U = XY$.			
		(ii) The regression lines for two random variables X and Y are	CO2-Ana	(8)	
		8X - 10Y + 66 = 0 and $40X - 18Y = 214$. Find			
		(a) the mean values of X and Y			
		(b) the correlation coefficient between X and Y.			
18.	(a)	(i) Consider the random process $X(t) = Y \cos \omega t$, $t \ge 0$, Where ω	CO3-Ana	(8)	
		is a constant and Y is a uniform random variable over $(0,1)$. Find			
		the auto correlation function $R(t, \tau)$ of $X(t)$.			
		(ii) The probability distribution of the process $\{X(t)\}$ is given by	CO3-Ana	(8)	

$$P[X(t) = n] = \begin{cases} \frac{(at)^{n-1}}{(1+at)^{n+1}}, & n = 1, 2, 3, \dots \\ \frac{at}{1+at}, & n = 0 \end{cases}$$

Show that it is not stationary.

Or

- (b) (i) If customers arrive at a counter in accordance with a Poisson CO3-Ana (8)process with a mean rate of 2 per minute, find the probability that the interval between 2 consecutive arrivals is (1) more than 1 minute (2) between 1 minute and 2 minutes and (3) 4 minutes or less.
 - (ii) Consider the process $X(t) = A \cos \omega t + B \sin \omega t$, where CO3-Ana (8)A and B are uncorrelated random variables each with mean 0 and variance 1 and ω is a positive constant. Show that the process X(t) is covariancestationary.

19. (a) (i) If $R_{XX}(\tau) = a^2 e^{-2\lambda |\tau|}$ is the autocorrelation function of a CO4-App (8)random telegraph signal process X(t), obtain the power spectral density of X (t).

(ii) If
$$Y(t) = X(t+a) - X(t-a)$$
, prove that
 $R_{yy}(\tau) = 2R_{xx}(\tau) - R_{xx}(\tau+2a) - R_{xx}(\tau-2a)$
(8)

(b) (i) The power spectral density of the random process is given by CO4-App (8)

 $S_{XX}(\omega) = \begin{cases} S_0 & -a < \omega < a \\ 0 & otherwise \end{cases}$

Find the autocorrelation function and also the mean square value.

(ii) The cross-power spectrum of real random processes CO4-App (8)

 $\{X(t)\}$ and $\{Yt\}$ is given by $S_{XY}(\omega) = \begin{cases} a + bj\omega & -1 < \omega < 1 \\ 0 & otherwise \end{cases}$

Find the cross-correlation function.

20. (a) A random process X(t) is the input to a linear system whose CO5-App (16)impulse function is $h(t) = 2e^{-t}$; $t \ge 0$. The autocorrelation of the function of the process is $R_{XX}(\tau) = e^{-2|\tau|}$. Find the power spectral density of the output process Y(t).

(b) If X (t) is a WSS process and $H(\omega)$ is the system transfer CO5-App (16) function if

$$Y(t) = \int_{-\infty}^{\infty} h(u)X(t-u)du \quad \text{then prove that}$$

(i) $R_{XY}(\tau) = R_{XX}(\tau) * h(\tau)$
(ii) $R_{YY}(\tau) = R_{XY}(\tau) * h(-\tau)$
(iii) $S_{XY}(\omega) = S_{XX}(\omega) * H(\omega)$
(iv) $S_{YY}(\omega) = S_{XX}(\omega) * |H(\omega)|^2$