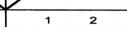

С		Reg. No. :									
Question Paper Code: 54404											
B.E. / B.Tech. DEGREE EXAMINATION, MAY 2018											
Fourth Semester											
Electronics and Communication Engineering											
15UEC404- SIGNALS AND SYSTEMS											
(Regulation 2015)											
Dura	Duration: Three hours Maximum: 100 Marks										
Answer ALL Questions											
PART A - $(5 \times 1 = 5 \text{ Marks})$											
1.	The power of the ener	gy signal is	_over infinite time.				CO1- R				
	(a) Zero	(b) One	(c) Infinite			(d)	(d) None of the above				
2.	The total average power of the periodic signal $x(t)$ is equal to the CO2- R average power of its phasor components is known as										
	(a) Dirichlet condition		(b) Parsevals power theorem								
	(c) Symmetry propert	(d) None of the above									
3.	The output of the system changes with respect to applied input is CO3- R							CO3- R			
	(a) Natural response	(b) Forced response	(c) either (a) or (b) (d) ((a) and (b)					
4.	All causal systems must have the component of					CO4- R					
	(a) Memory	(b) Clock	(c) Resistor		(d)	(d) Linearity					
5.	Z-transform of $u(-n)$	-transform of $u(-n)$ is CO5- R						CO5- R			
	(a) $(1-z)^{-1}$	(b) $(1+z)^{-1}$	(c) (1 –	<i>z</i>)		(d)	(1+	z)			

 $x[n] = \{0, 0, 0, 3, 2, 1, -1, -7, 6\}$


- Given $y(n) = x(n) + \frac{1}{8}x(n-1) + \frac{1}{3}x(n-2)$. Find whether the system is 10. CO5- R stable or not.
 - $PART C (5 \times 16 = 80 Marks)$
- 11. (a) (i) Define and plot the following signals CO1- App (4)1. Ramp 2. Step 3. Impulse 4. Exponential

з

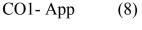
4

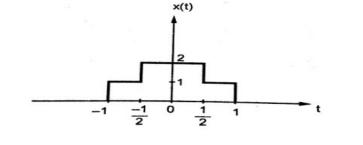
5

Or

(b) (i) Given x(t).

6.


7.


8.

9.

If

the

2

Sketch the following signals 1) x(3t+2)2) x(-t/2 - 1)

54404

 $PART - B (5 \times 3 = 15 Marks)$

Define periodic and non-periodic signal with an example.

signal

time

What is meant by recursive and non-recursive systems?

discrete

find y[n] = x[2n - 3].

then

CO1- R

CO2- R

CO3- R

CO4- R

(ii) Given $y[n] = x[n] + nx[n + 1]$. Determine whether the	CO1- App	(8)
system is causal, linear, time invariant and memory less.		

12. (a) Find the Fourier series of the signal CO2- App (16) $x(t) = \int_0^{2\pi} \sin 2\pi f_0 mt \cos 2\pi f_0 nt dt$ Where f_0 is the fundamental frequency and m and n are any positive integer

Or

- (b) State and explain the following properties of Fourier Transform CO2 Ana (16)
 i) Linearity
 - ii) Differentiation and Integration
 - iii) Convolution
 - iv) Time shifting
- 13. (a) (i)Find the Laplace transform of $x(t) = e^{-b|t|} for \ b < 0 \ and \ b > 0$ (6)
 - (ii) Find the inverse Laplace transform of

$$x(s) = \frac{2s^2 + 9s - 47}{(s+1)(s^2 + 6s + 25)}$$

Or

(b) Find the convolution of x(t) and h(t)

$$x(t) = \begin{cases} 1 ; & 0 \le t \le 2 \\ 0 ; & otherwise \end{cases}$$
(16)

$$h(t) = \begin{cases} 1 ; & 0 \le t \le 3 \\ 0 ; & otherwise \end{cases}$$

14. (a) (i) Obtain the circular convolution of $x_1(n) = \{2,1,2,1\}$ and CO4- App (8) $x_2(n) = \{1,2,3,4\}$

(ii) Find DTFT of
$$x[n] = -a^n u[n-1]$$
 for $|a| > 1$ CO4- App (8)

Or

- (b) (i) State and prove any three properties of DTFT.
 (ii) Find the linear convolution of
 CO4 Ana
 (4)
 - $x(n) = \{1,2,3,4\}$ and $h(n) = \{2,3,4,1\}$

15. (a) (i) State and prove convolution property of z-transform. CO5- App (8)

(ii) Find the inverse Z-transform of CO5- App (8)

$$X(z) = \frac{1}{1024} \left[\frac{1024 - z^{-10}}{1 - \frac{1}{2} z^{-1}} \right], \quad |z| > 0$$

Or

(b) Realize direct form-I and direct form-II realization of the discrete CO5-Ana (16) time system having system function

$$H(z) = \frac{2(z+2)}{z(z-0.1)(z+0.5)(z+0.4)}$$