С		Reg. No. :										
Question Paper Code: 54403												
B.E. / B.Tech. DEGREE EXAMINATION, MAY 2018												
Fourth Semester												
Electronics and Communication Engineering												
15UEC403–ELECTROMAGNETIC FIELDS												
(Regulation 2015)												
Duration: Three hoursMaximum: 100 Marks											ırks	
Answer ALL questions												
PART A - $(5 \times 1 = 5 \text{ Marks})$												
1.	In Cartesian coordinate system the coordinates are									CO	1- R	
	(a) (x,y,z)	(b) (r,φ,z)	(c) (τ,θ,z)				(d) (x	κ,θ,φ)		
2.	The relationship between B and H is								CO2- R			
	(a) B=H	(b) $B = \mu H$	(c) B	= -H				(d) H	[= μ	В		
3.	-	on between two dielec nsity B is	trics the	norma	ıl con	npone	nt			CO	3- R	
	(a) Unity	(b) non-continuous	(c) ze	ro				(d) cc	ontinu	ious		
4.	The Point form of N obtained from	Maxwell's first equation	n for the	time v	aryin	ig field	l is			CO	4- R	
	(a) Ampere's circuit	(b) G	(b) Gauss's law									

(c) Coulomb's law (d) Faraday's law

- 5. The propagation constant is expressed as
 - (a) $\gamma = \alpha + \epsilon \beta$ (b) $\gamma = \alpha + \mu \beta$ (c) $\gamma = \alpha + j\beta$ (d) $\gamma = \alpha + \beta$

$$PART - B$$
 (5 x 3= 15Marks)

6.	State Divergence theorem and write mathematical expression for Divergence											
	theo	rem.										
7.	State Biot-Savart's law and also write Lorentz force equation.											
8.	State properties of conductor and dielectric materials.											
9.	What is the significance of displacement current?											
10.	Defi	CO5- R										
	PART – C (5 x 16= 80Marks)											
11.	(a)	(i) Write shot notes on three co-ordinate systems.	CO1- App	(4)								
		(ii) Obtain the expression for electric field intensity on the axis of a uniformly charged circular disc.	CO1- App	(10)								
	Or											
	(b)	(i) Derive the electric field due to an infinite uniformly charged sheet.	CO1- App	(8)								
		(ii) State and prove Gauss's law. Write applications of Gauss's law.	CO1- App	(8)								
12.	(a)	Derive an expression for magnetic field intensity due to a linear conductor of infinite length carrying current I at a distance, point P. Assume R to be the distance between conductor and point P. Use Biot-Savart"s Law.	CO2- App	(16)								
	Or											
	(b)	(i) Derive an expression for the force between two current carrying wires. Assume that the currents are in the same direction.	CO2- App	(8)								
		(ii) Derive an expression for a torque on a closed rectangular loop carrying current.		(8)								
13.	(a)	(i) Derive Poisson's and Laplace's equation.	CO3- Ana	(8)								

(ii) Obtain the expressions for the energy stored and energy CO3- Ana (8) density in a capacitor.

Or

(b) (i) Derive an expression for inductance of a solenoid with N turns CO3- Ana (8) and *l* metre length carrying a current of I amperes.

(ii) Explain magnetic boundary conditions with neat sketch. CO3- U (8)

14. (a) Derive the integral and point form of Maxwell"s equations from CO4- U (16) Faraday"s law and Ampere"s law.

Or

- (b) Explain the following poynting vector, average power and CO4- Ana (16) instantaneous power.
- 15. (a) Derive the wave equation starting from the Maxwell's equation CO5-App (16) for free space.

Or

(b) Derive the reflection of uniform plane waves in normal incidence CO5-App (16) at plane dielectric boundary.