Reg. No. :				
------------	--	--	--	--

Question Paper Code: 44403

B.E. / B.Tech. DEGREE EXAMINATION, MAY 2018

Fourth Semester

Electronics and Communication Engineering

14UEC403 - ELECTROMAGNETIC FIELDS

(Regulation 2014)

Duration: Three hours

Answer ALL Questions

Maximum: 100 Marks

PART A - (10 x 1 = 10 Marks)

1. A field F is said to be SOLENOIDAL if

(a) CURL F=0	(b) DIV F=0	(c) $\nabla^2 F = 0$	$(d) \int F.dl = 0$
			× / J

2. Discuss-Charged line

(a) infinitesimal charge elements	(b) Enlarged charge elements
(c) Supreme Charged elements	(d) None of the above

3. What is magnetic flux density?

- (a) Magnetic field (b) Magnetic Induction (d) None of these
- (c) Electric Intensity
- 4. Give the lorentz force equation

(a) $F=qE+qvxB$	(b) F=Eq+B
(c) $F=B+Qx$	(d) none of these

- 5. What is point form of Ohm's law
 - (a) Two points directly proportional (b) Both on same directions
 - (c) Both are different directions
- (d) none of these

6.	Define electric dens	ity			
	(a) Electric field	1	(b) Non Electric Fie	ld	
	(c) Magnetic Fi	eld	(d) none of these		
7.	Discuss Faraday's la	aw			
	(a) Non Magnetic Field		(b) Electromagnetic Induction		
	(c) Electric Fiel	d	(d) none of these		
8.	Unit of Poynting ve	ctor is			
	(a) VA/m	(b) VA	(c) VA/m ²	(d) Watt/m	
9.	What is skin effect?				
	(a) High Frequency AC(c) Very Low Frequency AC		(b) Low frequency AC		
			(d) none of these		
10.	Conductivity of per-	fect dielectric is			
	(a) unity	(b) 0.5	(c) $\frac{1}{\sqrt{2}}$	(d) zero	

PART - B (5 x 2 = 10 Marks)

- 11. List the principles of superposition.
- 12. Define Biot-Savart Law.
- 13. Define mutual inductance.
- 14. State Poynting theorem.
- 15. Give the properties of conductors.

PART - C (5 x
$$16 = 80$$
 Marks)

16. (a) Discuss and obtain an expression for incremental length, surface area and volume integrals. And also state divergence theorem. (16)

Or

- (b) State and prove Gauss law with applications. (16)
- 17. (a) (i) How is torque on a loop carrying current.
 - (ii) Derive an expression for magnetic field intensity due to an infinite long conductor.(8)

(8)

(b) Prove Ampere's circuital law. Derive an expression for vector magnetic potential.

(16)

18. (a) (i)	Explain and derive the boundary conditions for a electric field with an exa	imple.
		(10)

(ii) Write short notes on solenoids. (6)

Or

- (b) (i) Obtain an expression for capacitance of a parallel plate capacitor. (8)
 (ii) Explain the following (a) magnetization (b) permeability. (8)
- 19. (a) Derive the Poynting vector from Maxwell's equations and explain power of flow.

(16)

Or

- (b) With necessary explanation, derive the Maxwell's equation in integral and differential form. (16)
- 20. (a) Derive wave equation in a conducting medium. (16)

Or

(b) Derive the transmission and reflection coefficient for the electromagnetic waves when incident normally on perfect dielectric. (16)

#