A		Reg. No. :												
		Question Par	oer (Cod	le: 5	594()4]						
	B.E.	/ B.Tech. DEGREE E	XAN	/IN/	ATIC	DN, I	МАҰ	201	8					
		Ele	ective	9										
		Electronics and Comm	nunio	catio	n Ei	ngine	erin	g						
	15	UEC904–LINEAR CO (Regula	DNT tion 2	ROL 2015	EN)	GINI	EERI	ING						
Dur	ation: Three hours					М	axin	num:	100	Maı	ks			
		Answer AI	LL Q	uesti	ons									
		PART A - (10	x 1 =	= 10	Mar	ks)								
1.	Spring constant in force-voltage analogy is analogous to CO1- R							1- R						
	(a) capacitance		(1	b) re	cipro	ocal o	of caj	pacit	ance	1				
	(c)current		(0	d) re	sista	nce								
2. In signal flow graph, function points are called								CO	1 - R					
	(a) joints	(b) nodes	(0	c) fu	nctio	onal p	ooint	S	((d) b	lock	5		
3.	The time required for the response to reach half the final value for the CO2- R first time is													
	(a) decay time	(b) pick up time	(0	c)del	ay ti	me				(d) ri	se ti	me		
4.	The type 2 system has								CO	2- R				
	(a) no net pole at origin			(b) net pole at the origin										
	(c) simple pole at the origin			(d) two poles at the origin										
5.	is used for Nyquist plot.											CC)3 R	
	(a) characteristics equation			(b) open loop function										
	(c) closed loop function			(d) nonlinear function										

6.	The function $1/j\omega T$ h	as slope of		CO3 R					
	(a) -20 db/decade	(b)+20 db/decade	(c)+6db/decade	(d)+40db/decade					
7.	The system with cha	CO4 R							
	(a) stable								
	(c) not necessarily st	able	(d) unstable						
8.	For root locus which	CO4 R							
	(a) open loop zeros		(b) closed loop zeros						
	(c) closed loop poles		(d) open loop poles						
9.	Presence of non-line	CO5 R							
	(a) transient error	(b) instability	(c) steady state error	(d) all of the above					
10.	For a linear time invariant system, an optimum controller can be CO5 R designed if								
	(a) The system is controllable and observable (b)The system is uncontrollable and stable								
	(c)The system is uns	e and unobservable							
	PART - B (5 x 2 = 10 Marks)								
11.	Define transfer funct	CO1- R							
12.	Why compensation i	CO2- R							
13.	List the frequency do	CO3- R							
14.	Write the necessary a	CO4- R							
15.	What is meant by sta	CO5- R							
PART – C (5 x 16= 80Marks)									
16.	 (a) Write the differential equations governing the mechanical system CO1- App (16) shown in figure. Draw the force-voltage and force-current electrical analogous circuits and verify by writing mesh and node 								

equations.

(b) Determine the overall transfer function C(S)/R(S) for the system CO1- App (16) shown in figure.

17. (a) Derive an expression for response of under damped second order CO2- App (16) system for unit step input.

Or

(b) For a unity feedback control system the open loop transfer CO2- Ana (16) function $G(s) = \frac{10 (s+2)}{s^2 (s+1)}$. Find

- (i) the position, velocity and acceleration error constants
- (ii) the steady state error when input is R(s), where

$$\mathbf{R(s)} = \frac{3}{s} - \frac{2}{s^2} + \frac{1}{3s^3}$$

18. (a) Plot the bode diagram for the following transfer function and CO3- Ana (16) obtain the gain and phase cross over frequencies. $G(s) = \frac{10}{s(1+0.4s)(1+0.1s)}$

Or

- (b) The open loop transfer function of a unity feedback system is CO3- Ana (16) given by $G(S) = \frac{1}{s(1+s)(1+2s)}$. Sketch the polar plot and determine the gain margin and phase margin.
- 19. (a) Using Routhcriterion, determine the stability of the system.CO4- U(8)(i) $S^4 + 8s^3 + 18s^2 + 16s + 5 = 0$ (ii) $S^5 + 4s^4 + 8s^3 + 8s^2 + 7s + 4 = 0$ CO4- U(8)

Or

- (b) Sketch the root locus of the system whose open loop transfer CO4- Ana (16) function is $G(s) = \frac{k}{s(s+2)(s+4)}$.
- 20. (a) Consider the system given by $\frac{Y(s)}{U(s)} = \frac{s+3}{s^2+3s+2}$. Obtain state space CO5-U (16) representation in diagonal canonical form.

Or

(b) Evaluate controllability and observability of the given system. CO5- U (16)

$$\mathbf{A} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -3 \end{bmatrix} \mathbf{B} = \begin{bmatrix} 1 & 0 \\ 1 & 2 \\ 1 & 1 \end{bmatrix} \mathbf{C} = \begin{bmatrix} 1 & 1 & 2 \\ 3 & 1 & 5 \end{bmatrix}$$