Reg. No. :	
------------	--

Question Paper Code: 56503

B.E. / B.Tech. DEGREE EXAMINATION, MAY 2018

Sixth Semester

Electronics and Instrumentation Engineering

15UEI603-PROCESS CONTROL

(Regulation 2015)

Duration: Three hours

Maximum: 100 Marks

CO1- R

CO1- R

Answer ALL Questions

PART A - (10 x 1 = 10 Marks)

- 1. Dead zone is the
 - (a) Same as time constant
 - (b) Same as transportation lag
 - (c) Maximum change in the variable that does not change the reading of the instrument
 - (d) None of the above
- 2. Thermocouple in a thermal well behaves as a true
 - (a) first order system (b) multiple first order system
 - (c) second order system (overdamped) (d) second order system (underdamped)
- 3. The standard measured indication range of a transducer is 4-20mA. CO2- App If we have a set point value of 11mA and a measurement of 11.5mA,calculate the error expressed as percent of span
 - (a) -3.125% (b) 3.125% (c) 31.25% (d) -31.25%
- 4. A proportional controller with a gain of K_C is used to control a first order process. The offset will increase, if CO2- U
 - (a) K_c is reduced (b) K_c is increased
 - (c) integral control action is introduced (d) derivative control action is introduced

5. The equation of ITAE is

	(a) $\int_0^\infty e(t) dt$	(b) $\int_0^\infty t e(t) dt$	(c) $\int_{-\infty}^{\infty} t e(t) dt$	(d) $\int_{-\infty}^{\infty} t dt$	
6.	Use of <i>I</i> -control along	CO3- R			
	(a) elimination of offset		(b) reduction of offset		
	(c) reduction of stabilit	y time	(d) none of these		
7.	The main purpose of co	ontrol valve positione	r is to	CO4- R	
	(a) Alter the fail safe status of the valve		(b) Improve the precision of the valve		
(c) Alter the characterization of the valve			(d) Eliminate the cavitations of the valve		
8.	The relation slip betwe	en C_V and K_V is		CO4- R	
	(a) $C_V = 1.17 K_V$	(b) $C_V = 0.86 \text{ K}_V$	(c) $C_V = -1.17 K_V$	(d) $C_V = 1.28 K_V$	
9.	 The control configuration with primary loop and secondary look known as 			CO5- R	
	(a) Cascade control		(b) Split range control		
	(c) Ratio control		(d) Feed forward contro	ol	
10.	Feed forward controlle	r accounts for the	changes	CO5- R	
	(a) set point		(b) load		
	(c) both (a) & (b)		(d) neither (a) nor (b)		
		PART – B (5 x	2= 10Marks)		
11.	. Why do we need mathematical modeling of process?			CO1- U	
12.	. Mention two drawbacks of derivative action.			CO2- U	
13.	What are the parameters required to design a best controller?				
14.	What is flashing in control valve?				
15.	Define ratio control.			CO5- R	

CO3- U

- 16. (a) (i) Derive the transfer function H(s)/Q(s) for the liquid level CO1- App (10) system shown in Fig., When
 - (a) The tank operates about the steady state value of $h_s = 0.3m$
 - (b) The tank operates about the steady state value of $h_s = 1$

(ii) Obtain the model for first order liquid level system CO1- App (6)

Or

(b) (i) Explain in detail about servo and regulatory operation. Also CO1-U (12) obtain the transfer function for the same.

(ii)The figure shows a steam heater where process fluid is CO1-App (4) heated with the help of steam. Find out the number of degrees of freedom of this heating system.

17. (a) (i)Design an electronic PID controller using op-amp. CO2- App (8)

(ii)A Proportional –Derivative controller has a measured input CO2- App (8) range of 0.4-2V and an output range of 0-5V, and K_D = 0.08%per(% / min). The period of the fastest expected signal change is 1.5seconds. Implement this controller with an op amp circuit.

(b) (i) A PI controller indicates an output of 12mA when the error CO2- Ana (8) is zero. The set point is suddenly increased to 14mA and the controller output is recorded and is given below. Find K_P and T_I .

Time t,sec	0	10	20	30
Output mA	14	16	18	20

(ii) Draw and explain pneumatic proportional controller. CO2- U (8)

18. (a) Explain the procedure for tuning PID controller using Z-N CO3-U (16) method and process reaction curve method.

Or

(b (i) Define decay ratio criterion and derive the controller tuning CO3- Ana (8) parameter using ¹/₄ decay ratio criterion.

(ii) Explain the criterion which is used as guideline to select the CO3-U (8) controller for tuning.

19. (a) What is valve positioner? And explain in detail about Motion CO4-U (16) balance positioner and Force balance positioner.

Or

- (b) Explain in detail about inherent and installed characteristics of CO4-U (16) control valve.
- 20. (a) Draw the configuration of cascade control and explain any one CO5-U (16) application with neat diagram.

Or

(b) Illustrate the operation of split range controller and inferential CO5-U (16) controller.