		Reg No ·				
		Reg. 100				
		Question Paper	Code:49508			
	B. E./	B.Tech. DEGREE EXA	AMINATION, APRI	L 2018		
		Elec	tive			
		Electronics and Instrur	nentation Engineerin	g		
	14	UEI908- ROBOTICS	AND AUTOMAT	ION		
		(Regulati	on 2014)			
Dur	ation: Three hours			Maximu	m: 100 N	Aarks
		PART A - (10 x	1 = 10 Marks)			
1.	For a robot unit to be	e considered a functiona	al industrial robot, ty	pically,		CO1- I
	how many degrees o	of freedom would the ro	bot have?			
	(a) 6	(b) 5	(c) 4		(d) 2	
2.	into which the robot	of a robot is the smalle can divide its work vol	est increment of mo ume	vement		CO1- I
	(a) Spatial resolution	n (b) Accuracy	(c) Repeatability		(d) Rang	e
3.	Heavy lifting work machines. The powe	is often accomplished or system of such machi	d by shifting fluids nes can be described	in big as		CO2- I
	(a) Reciprocating	(b) Pneumatic	(c) Hydraulic		(d) Hybr	id
1.	Both stator and rotor motor, when the exc next. Determine the	r there are eight teeth or sitation is changed from step angle.	f a 3 stack four pole one stack to anothe	stepper r to the		CO2- I
	(a) 10 degree	(b) 15 degree	(c) 20 degree		(d) 25 de	gree
5.	The met distance of the objec	hod is used in IR type i	range sensor to meas	sure the		CO3- I

(b) triangulation

(d) total internal reflection

(b) surface without any hold

(d) corner less surface to hold

CO3- R

6.

(a) reflected light intensity

(c) refraction light intensity

Magnetic type gripper need

(c) one side of surface to hold

(a) smooth surface to hold

7.	The 2-DOF universal joint is the combination of intersecting of			C	204 - R	
	(a) ⁻	Two revolute joints	(b) Two prismatic joints			
	(c) 7	Two Helical joints	(d) Two planner joints			
8.	The inverse kinematics problem is much more complex because			С	04- R	
	(a) The equation to be solved are in general non-linear in joint variables					
	(b) Multiple solutions may exist					
	(c) There might be no admissible solutions					
	(d) non-linear in joint variables and multiple solution					
9.	The size and shape of the robot body is given by following parameters			С	05- R	
	(a)]	Link length	(b) Joint angle			
	(c)]	Link length and Twist angle	(d) Joint angle and Joint of	offset		
10.	A PUMA robot usually consists of			C	05- R	
	(a) \$	Six revolute axes	(b) Five revolute axes			
	(c)]	Four revolute axes	(d) Three revolute axes			
		PART - B (5	5 x 2= 10Marks)			
11.	State Asimov's laws of Robotics.		CO	1 - R		
12.	Compare the pneumatic and hydraulic drives.			CO	CO2- Ana	
13.	Define links, joints and their parameters.			CO	3- R	
14.	What do you mean by Jacobian work envelope.			CO4	CO4-U	
15.	Write short notes on the selection criteria of robot.		CO	CO5-U		
		PART – C	(5 x 16= 80Marks)			
16.	(a) (i) Illustrate the basic structure of robot.			CO1-U	(8)	
	(ii) Classify the robots based on degrees of freedom and drive technology.			CO1-U	(8)	
		Or				
	(b)	(i) Explain the dynamic stabilization	of robotics.	CO1-U	(8)	
	(ii) Outline the various generation of robots.			CO1-U	(8)	

17.	(a)	Explain the function of machine vision systems in robotics.	CO2-U	(16)
		Or		
	(b)	Explain the functions of magnetic, fiber optic and tactile sensors used in robotics.	CO2-U	(16)
18.	(a)	(i) Outline the concepts of manipulator dynamics and force control.	CO3-Ana	(8)
		(ii) Compare the function of electronics and pneumatic manipulator		(8)
		control circuits.		
		Or		
	(b)	(i) Summarize the design considerations of grippers.	CO3-Ana	(8)
		(ii) Compare the function of end effector and manipulator.	CO3-Ana	(8)
19.	(a)	Explain inverse kinematics for a robotic arm to determine the joint	CO4-U	(16)
		angle for a desired position of the arm.		
		Or		
	(b)	(i) Interpret the function of different types of programming	CO4-U	(10)
		language used in robotics.		
		(ii) Outline the concepts of Hill Climbing Techniques.	CO4-U	(6)
20.	(a)	Exemplify the application of robot in manufacturing and non-manufacturing field.	CO5-U	(16)
		Or		
	(b)	(b) (i) Explain the operation of Mutiple robots.		(8)
		(ii) Summarize the robot cell design concepts.	CO5-U	(8)