Reg. No.:					

Question Paper Code: 43205

B.E. / B.Tech. DEGREE EXAMINATION, MAY 2018

Third Semester

Computer Science and Engineering

14UCS305 - OPERATING SYSTEMS

(Pagulation 2014)

		(Regulation	2014)	
	Duration: Three hours			Maximum: 100 Marks
		Answer ALL Q	uestions	
	I	PART A - (10 x 1 =	= 10 Marks)	
1.	To avoid the race condition, their critical section is.	he number of proc	esses that may be s	imultaneously inside
	(a) 8 (b) 1		(c) 16	(d) 0
2.	The number of processes com	npleted per unit tim	ne is known as	
	(a) output	(b) throughput	(c) efficiency	(d) capacity
3.	Which scheduling policy is m	ost suitable for a t	ime-shared operatir	ng system
	(a) Shortest-job First.	(b) I	Priority	
	(c) Round-Robin.	(d) F	irst-Come-First-Ser	rve
4.	In an absolute loading scheme	e, which loader fur	nction is accomplish	ned by assembler
	(a) Reallocation		(b) Allocation	
	(c) Linking		(d) Loading	
5.	'LRU' page replacement poli	cy is		
	(a) Last Replaced Unit.	•) Last Restored Uni	
	(c) Least Recently Used) Least Required U	nit	

	memory of 32 frame	s. How many bits ar	re in Logical Address?	
	(a) 10	(b) 12	(c) 13	(d) 15
7.	The operating system	n keeps the informat	tion of files in a table cal	led
	(a) File Folder T (c) File Allocati	Cable (FFT) on Table(FAT)	(b) File Index Table(d) Directory Index	· · ·
8.	The disadvantage of	the two level direct	ory structure is that	
	(b) it solves the(c) it does not is	olve the name collision problem olate users from one another	lem another	
9.	The design goals (iv) compatibility.	of Windows includ	e (i) Extensibility (ii)	Reliability (iii) Portability
	(a) (i) and (ii) o (b) (ii) and (iii) (c) (i), (ii) and (d) (i), (ii), (iii)	only (iii) only		
10.	The computational t	echnique used to co	mpute the disk storage a	ddress of individual records
	(a) hashing(c) dynamic rea	llocation	(b) bubble memory(d) key fielding	
		PART - B	$(5 \times 2 = 10 \text{ Marks})$	
11.	Compare user thread	ls and kernel threads	s.	
12.	What are the various	scheduling criteria	for CPU Scheduling?	
13.	Differentiate betwee	n page and segment	?	
14.	If the average page 1 100ns.Calculate the		f 25 ms and a memory ace.	ecess time of

6. Consider a logical address space of eight pages of 1024 words each mapped onto a physical

15. List the various key features of VM ware server virtualization.

PART - C (5 x
$$16 = 80 \text{ Marks}$$
)

- 16. (a) (i) Demonstrate about the evolution of virtual machine. Also explain how virtualization could be implemented in Operating system. (8)
 - (ii) Enumerate different operating system structures and explain with a neat sketch.

(8)

Or

- (b) Explain in detail about computer system organization and operating system structure with operations. (16)
- 17. (a) (i) Explain the classical problem on synchronization.

(8)

(ii) Explain about monitors.

(8)

Or

(b) Consider the following snapshot of a system:

Process	Allocation			Max				Available				
	A	В	С	D	A	В	С	D	A	В	C	D
P0	0	0	1	2	0	0	1	2	1	5	2	0
P1	1	0	0	0	1	7	5	0				
P2	1	3	5	4	2	3	5	6				
Р3	0	6	3	2	0	6	5	2				
P4	0	0	1	4	0	6	5	6				

Answer the following question using banker's algorithm: (i) what is the content of the need matrix? (ii) Is the system in a safe state? (iii) If the request from process PI arrives for (0, 4, 2, 0), can the request be granted immediately. (16)

18. (a) Illustrate contiguous memory allocation schemes, give examples. (16)

Or

(b) Explain about the concepts of virtual memory in detail. (16)

19.	(a)	Suppose that the disk drive has 5000 cylinders number 0 to 4999. The drive is currently
		serving a request at cylinder 143 and the previous request was at 125, the queue of the
		pending request in FIFO order is: 86, 1470, 913, 1174, 948, 1509, 1022, 1750,130
		starting from the current head position, what is the total distance (cylinders) that the
		disk arm moves to satisfy all the pending requests for each of the disk scheduling
		algorithms. (16)

Or

(b) (i) Discuss in detail about types of file access. (8)

(ii) Write in detail about Free-Space management. (8)

20. (a) Explain in detail the design principles, kernel modules, process management, scheduling in LINUX system. (16)

Or

(b) (i) Describe about the network structure of LINUX system. (8)

(ii) Describe how file system is implemented in Windows. (8)
