A		Reg. No. :					
		Question Paper	r Code	: 52005	;		
B.E. / B.Tech. DEGREE EXAMINATION, MAY 2018							
		Second S	emester				
		Computer Scien	ce Engin	eering			
	15UPH205 - SEI	MICONDUCTOR PH	YSICS A	ND OP7	TO ELE	CTRON	NICS
		(Common to ECE	and IT b	ranches)			
		(Regulatio	on 2015)				
Dura	ation: Three hours			Ma	aximum:	100 M	arks
		PART A - (10 x	1 = 10 N	Aarks)			
1.	The time taken by a fr from its disturbed pos		s equilibi	ium posi	tion		CO1 -F
	(a) mean free path	(b) mean free energy	y (c)	collision	time	(d) re	laxation time
2.	At any non-zero ten function becomes	pperature and $E=E_F$, the Fe	rmi dist	ribution		CO1 -F
	(a) 0	(b) 1	(c) 0.5			(d) -1	
3.	impurity ator tetravalent semicondu		prepara	tion of 1	N- type		CO2 -R
	(a) trivalent	(b) pentavalent	(c) tetra	ıvalent		(d) m	onovalent
4.	The magnitude of Boh	nr magneton is					CO2 -F
	(a) 9.27 x 10^{-24} Am ²	(b) 9.27 x 10^{24} Am ²	(c) 9.24	4 x 10 ⁻²⁴	Am ²	(d) 9.	$27 \text{ x } 10^{-27} \text{ Am}^2$
5. The electric strain produced in an atom is called as					CO3 -F		
	(a) ionic polarisation		(b) elec	tronic po	olarisatio	n	
	(c) orientational polar	isation	(d) space	ce-charge	polaris	ation	

6.	Super conductors exhibits property					
	(a) diamagnetic	(b) paramagnetic	(c) ferromagnetic	(d) antiferrom	antiferromagnetic	
7.	Electron tunneling via electro-absorption is referred as				CO4 -R	
	(a) Seebeck effect		(b) Franz-Keldysh effe			
	(c) Compton effect		(d) Joule-Kelvin effect			
8.	The optical switching time is				CO4- R	
	(a) $> 10^{12}$ s	(b) $< 10^{12}$ s	(c) >10 ⁻¹² s	(d) $< 10^{-12}$ s		
9.	The light collecting efficiency of optical fiber is called				CO5 -R	
	(a) acceptance ang	e (b) cladding	(c) numerical aperture	(d) core		
10.	Signal broadening	at the output end of the	fiber is referred as		CO5 -R	
	(a) reflection	(b) dispersion	(c) rarefaction	(d) diffraction	l	
PART - B (5 x 2= 10 Marks)						
11.	List any two de-merits of classical free electron theory CO1-					
12.	Distinguish between elemental and compound semiconductors					
13.	Calculate the critical current which can flow through a long thin CO3- App superconducting wire of aluminum of diameter 10^{-3} . The critical magnetic field of aluminum is 7.9 X 10^3 A/m.					
14.	Recall Franz Keldy	vsh effect			CO4- R	
15.	Recognize the two	conditions required to a	chieve total internal reflect	ction	CO5 -R	
PART – C (5 x 16= 80Marks)						
16.		assical free electron the and thermal conductiv	ory, find the expressions ity of metals.	CO1- U	(16)	

Or

	(b)	With the aid of quantum concept, deduce mathematical expressions for density of energy states and Fermi energy of electrons at 0K	CO1- U	(16)				
17.	(a)	Obtain mathematical expression to compute the conductivity of intrinsic semiconductor	CO2 U	(16)				
	Or							
	(b)	(i) Distinguish between para and ferro magnetic materials	CO2-Ana	(8)				
		(ii) Compare hard and soft magnetic materials	CO2 U	(8)				
18.	(a)	(i) Compute the expression required for finding local field of a dielectric atom subjected to an electric field	CO3 -Ana	(10)				
		(ii) Classify the dielectric materials	CO3-U	(6)				
		Or						
	(b)	(i) Recognize four properties of superconductors	CO3- U	(8)				
		(ii) Discriminate between Type I and Type II superconductors	CO3-Ana	(8)				
19.	(a)	Describe the pulse code modulation technique along with its merits and demerits	CO4 -U	(16)				
	Or							
	(b)	Explain the functioning of bipolar controller modulator and specify its two applications	CO4- U	(16)				
20.	(a)	Explain the classification of fibers based on refractive index profile and modes of propagation	CO5- U	(16)				
	(b)	Or (i) Skectch the block diagram of fiber optic communication system and label its parts	CO5- U	(10)				
		(ii) Describe the functioning of temperature sensor	CO5 -U	(6)				