C Reg. No. :										
--------------	--	--	--	--	--	--	--	--	--	--

Question Paper Code: 52208

B.E. / B.Tech. DEGREE EXAMINATION, MAY 2018

Second Semester

Computer science and Engineering

15UCS208 - DIGITAL PRINCIPLES AND SYSTEM DESIGN

		(Common to Inf	formation Technology)		
		(Regu	llation 2015)		
Dur	ration: Three hours			Maximum: 100 M	arks
		Answer A	ALL Questions		
		PART A - (1	$0 \times 1 = 10 \text{ Marks}$		
1.	The binary equivalent	ual to		CO1- R	
	(a)11.375	(b) 10.123	(c) 11.175	(d) 9.234	
2.	(a) Full-adders are ma(b) Full adders can ha(c) Full adders have a	ference between half-add ade up of two half-add andle double-digit num a carry input capability andle only single-digit	nbers		CO2- R
3.	The inputs in the PLI		CO3- R		
	(a) NAND gates	(b) OR gates	(c) NOR gates	(d) AND gates	

(c) Strobe

CO4-R

(d) None of the Mentioned

The sequential circuit is also called

(a) Flip-flop

(b) Latch

5.	In asynchronous circuit, changes occur with change of					
	(a) i	input	(b) output	(c) clock pulse	(d) time	
			PART – B	(5 x 2= 10Marks)		
6.	List	the number system	ıs			CO1- R
7.	Wha	at is code conversion	on?			CO2- R
8.	List	basic types of prog	grammable logic dev	ices		CO3- R
9.	Wha	at is the difference	between synchronou	s and asynchronous counter	er?	CO4- R
10.	. List out the steps for the design of asynchronous sequential circuit					
			PART –	C (5 x 16= 80Marks)		
11.	(a)	(i) Explain BCD	Code with Example	es	CO1-U	(8)
		(ii) List out the P give the exam		ing Binary to Gray Code	and CO1-U	(8)
			Or			
	(b)	(i) State and prov	ve DeMorgan's theor	rem	CO1-U	(8)
		. , .		to sum-of-products form $F(A,B,C,D) = \Sigma(0,1,2,5,8)$		(8)
12.	(a)	(i) Explain the I	Design procedure for	Combination Logic Circu	nits. CO2-U	(8)
		(ii) Explain the L half-subtractor	ogic implementation r.	of half–adder and	CO2-U	(8)
			Or			
	(b)	(i) Explain Logic Full – Subtrac	cal Implementation of tor.	of Full – adder and	CO2-U	(8)
		(ii) Draw the Log Explain.	tic Diagram for BCD	to Excess 3 code Convert	er and CO2-U	(8)
13.	(a)	(i) Design the 4	to 1 line Multiplexer	and analyze its functional	ities CO3- A ₃	pp (8)
		(ii) Design the Lo functionalities		8 line Decoder and analyz	ze its CO3- A ₁	pp (8)

	(b)	(i) Define Memory and discuss the operation & types of RAM and ROM.	CO3-U	(8)					
		(ii) Explain the Programmable Logic array.	CO3-U	(8)					
14.	(a)	(i) Describe S-R Flip Flop with neat diagram	CO4- U	(8)					
		(ii) Describe D Flip Flop with neat diagram	CO4- U	(8)					
	Or								
	(b)	(i) Explain Serial in Serial out Shift Register with neat diagram.	CO4- U	(8)					
		(ii) Draw a 3 bit binary Up-Down counter and explain it.	CO4- U	(8)					
15.	(a)	With suitable example and diagram explain the hazards in combinational and sequential logic circuits. Or	CO5- U	(16)					
	(b)	With necessary example and diagram explain the concept of reduction of state and flow tables.	CO5- U	(16)					