Reg. No. :									
------------	--	--	--	--	--	--	--	--	--

Question Paper Code: 30124

B.E. / B.Tech. DEGREE EXAMINATION, MAY 2018

Second Semester

Computer Science and Engineering

01UPH204- APPLIED PHYSICS

(Common to EEE, ECE, EIE, ICE and IT branches)

(Regulation 2013)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions.

PART A - (10 x 2 = 20 Marks)

- 1. Briefly describe about Lorentz number.
- 2. Write quantum theory.
- 3. Compare elemental and compound semiconductors.
- 4. What are p-type and n-type semiconductors?
- 5. What is Meissner effect?
- 6. What do you understand by the terms critical temperature and critical field of a superconductor?
- 7. List the types of super conductors.
- 8. Define dielectric loss and loss tangent.
- 9. What are shape memory alloys?
- 10. Write short note on carbon nano tubes.

11. (a) Derive an expression for electrical and thermal conductivities and hence deduce Wiedemann-Franz law. Also verify the Lorentz number using quantum free electron theory .

Or

	(b)	(i) Derive the expression for density of states.	(12)				
		(ii) Use the Fermi distribution function to obtain the value of					
		$F(E)$ for $E-E_F = 0.01 \text{ eV}$ at 350K.	(4)				
12.	(a)	What is Hall effect? Derive an expression for Hall co-efficient.	(16)				
Or							
	(b)	Explain in detail about variation of Fermi level with temperature.	(16)				
13.	(a)	(a) (i) Explain the hysteresis on the basis of domain theory.	(10)				
		(ii) Distinguish between soft and hard magnetic materials.	(6)				
Or							
	(b)	(i) Explain type-I and type-II superconductor.	(10)				
		(ii) Write any six applications of superconductor.	(6)				
14.	(a)	a) Derive an expression for electronic and ionic polarizability in dielectric materials.					
			(16)				
		Or					
	(b)	Derive an expression for local field in a dielectric material and hence	deduce				
		Claussius- Mosotti equation.	(16)				
15.	(a)	What are shape memory alloys? Explain their characteristics with neo	cessary				
		diagrams. Give its advantages.	(16)				
Or							
	b)	Briefly explain about					

- (i) Chemical vapour deposition (8)
- (ii) Electro deposition (8)