Reg. No. :

Question Paper Code: 54203

B.E./B.Tech. DEGREE EXAMINATION, MAY 2018

Computer Science and Engineering

15UCS403 - DESIGN AND ANALYSIS OF ALGORITHMS

(Regulation 2015)

Duration: Three hours

Maximum: 100 Marks

PART A - $(5 \times 1 = 5 \text{ Marks})$

1.	Desirable characteristic of an algorithm is		CO1- R			
	(a) Generality	(b) Correctness				
	(c) Simplicity	(d)All of the above				
2.	Based on the problem statement and definition approach is	ons, The straight forward	CO2- R			
	(a) Exhaustive Search	(b) Brute force				
	(c) Divide and Conquer	(d) Decrease and conquer				
3.	Dynamic programming is similar to the divide-and-conquer CO3-I approach, then the solution of a large problem depends on					
(a) Overlapping Sub problems						
	(b) Sub problems that are completely separate(c) Previously obtained solutions to sub problems					
	(d) None of the above					
4.	Which of the following standard a Programming based?	lgorithms is Dynamic	CO4- R			
	(a) 0/1 Knapsack problem	(b) Prim's Minimum Spanning Tre	e			
	(c) Kruskal's algorithm	(d) Dijikstra's algorithm				

5.	A Non-deterministic algorithm terminates unsuccessfully if and only if			C	05- R		
	(a) 7	There exists no choices for success	(b) The result of every of	peration varie	es		
	(c) S	Stack overflow occurs	(d) Sequence of choices	available			
PART - B (5 x 3 = 15 Marks)							
6.	Defi	Define Recursive and Non recursive algorithms.		C	01- R		
7.	Examine the advantages and implementation issues of Divide and Conquer OMethodology.			O2- U			
8.	Enumerate some real time applications of Maximum Flow Problem.			O3- U			
9.	Describe about 'Greedy algorithm'.			С	O2- R		
10.	How NP problems are different from NP complete?		C	CO4-U			
	PART – C (5 x 16= 80Marks)						
11.	(a)	Illustrate the working of Binary Search with pseudocode to perform Binary search algo Or	an example and Write an orithm.	CO2- App	(16)		
	(b)	Explain about the asymptotic notations an	nd its properties.	CO1- U	(16)		
12.	(a)	Apply bubble sort Algorithm for the giver 10,47,12,54,19,23	example.	CO2 -App	(16)		
	(b)	Write different algorithms for generations.	uting permutations and	CO2- U	(16)		
13.	(a)	Write the Pseudocode of Warshall's algor algorithm to find the transitive closure of	ithm. Apply Warshall's the digraph.	CO2 -App	(16)		

Or

- (b) Explain how dynamic programming technique is used to solve the CO2- U (16) knapsack problem with example.
- 14. (a) (i) Analyze Suitable method to find the optimal ordering for CO3-Ana (8) storage on tape problem
 (ii) Solve the following job sequencing with deadlines problem. CO4 Ana (8) Given n=7
 Profits (p₁,p₂,p₃,p₄,p₅,p₆,p₇)={3,5,20,18,1,6,30}
 Deadlines(d₁,d₂,d₃,d₄,d₅,d₆,d₇)={1,3,4,3,2,1,2}
 Or
 - (b) Consider an instance of the stable marriage problem given by the CO3- Ana (16) ranking matrix

	А	В	С
α	1, 3	2, 2	3, 1
β	3, 1	1, 3	2, 2
γ	2, 2	3, 1	1, 3

For each of its marriage matchings, indicate whether it is stable or not.

For the unstable matchings, specify a blocking pair. For the stable matchings, indicate whether they are man-optimal, woman-optimal, or neither.(Assume that the Greek and Roman letters denote the men and women, respectively.)

15. (a) Indicate a solution to the traveling salesman using branch and CO4-U (16) bound technique.

Or

(b) Trace a State-Space tree to solve the 8-queens problem by with the CO4- U (16) help of backtracking technique.