Α		Reg. No. :											
Question Paper Code: 51003													
B.E. / B.Tech. DEGREE EXAMINATION, MAY 2018													
	First Semester												
		Civil Eng	gine	ering	5								
	15UPH103- ENGINEERING PHYSICS												
	(Common to ALL branches)												
	(Regulation 2015)												
Duration: Three hours Maximum: 10)0 M	[arks	,						
		Answer all t	he Ç	Juest	ions								
		PART A - (10 2	x 1 =	= 10	Marl	ks)							
1.	There are crys	stal systems and		B	rava	is lat	tices					CO	1 -R
	(a) 14 and 7	(b) 7 and 14		(c) 3	32 an	d 23	4		(d	l) 4 a	nd 1	4	
2.	Atomic packing factor	mic packing factor is same for the following lattices										CO	1 -R
	(a) SC and FCC	(b) SC and BCC		(c) I	BCC	and	FCC		(d	l) FC	C ar	nd H	СР
3.	Sound waves having frequency more than 20000 Hz are										CO2	2- R	
	(a) Infrasonic waves	(b) Ultra sonic wave	es	(c) A	Audi	ble s	ound	l	(d	l) Mu	isic		
4.	Weber-Fechner law relates the Co						CO	2 -R					
	(a) Loudness and intensity (b) Frequency a					ey an	d wa	ave le	ength	1			
	(c) Frequency and dec	cibel		(d)	Sou	nd ar	nd he	at					
5. Nicol prism is an example of									CO	3 -R			
	(a) Polarizer	(b) Analyzer (c	c) De	etect	or	(d)) Bot	h po	lariz	er an	d an	alyze	er

6.	Pumping technique		CO3 -R					
	(a) Direct conversion		(b) Optical pumping					
	(c) Electric discharg	ge method	(d) Injection technique					
7.	de Broglie explained	d the concept of			CO4- R			
	(a) Particle nature of	f wave	(b) Wave nature of particle					
	(c) Particle nature of	f energy	(d) Wave nature of energy					
8.	Compton effect can be explained by							
	(a) Photo electric effect		(b) Classical theory					
	(c) Electromagnetic	theory	(d) Quantum theory					
9.	The ratio of shear stress to shear strain is C							
	(a) Bulk modulus	(b) Young's modulus	(c) Poison's ratio	(d) Rigidity m	odulus			
10.	Lee's disc method is	s used to determine the the	ermal conductivity of		CO5 -R			
	(a) Conductor	(b) Insulator	(c) Semiconductor	(d) Magnets	5			
		PART – B (5 x 2	= 10Marks)					
11.	Define unit cell				CO1- R			
12.	Mention the properties of ultrasonic waves							
13.	Distinguish between	CO3 -R						
14.	What is Compton effect?				CO4 -R			
15.	State Newton's law	of cooling.			CO5 -R			
		PART – C (5 x	x 16= 80Marks)					
16.	(a) Prove that the p	packing factor for HCP an	d FCC are same	CO1 -App	(16)			
		Or						
	(b) (i) Distinguish	single crystals from poly	crystalline solids	CO1- App	(4)			
		2						

(ii) How do you grow single crystals by Bridgman technique? CO1 - App (12)

- 17. (a) (i) How do you measure the wavelength of ultrasonic waves in CO2 -App (8) water by acoustic diffraction method?
 - (ii) Calculate the velocity of ultrasonic wave in a certain liquid CO2 -App (8) using the following data obtained in an acoustic grating experiment. Frequency of ultrasonic wave is 100 MHz Wavelength of the monochromatic light is 600 nm (red). The angle of first order diffracted beam is 5°

Or

- (b) (i) Construct a circuit for producing ultrasonic waves using the CO2 -Ana (8) following components.
 - i) A nickel rod of length 10 cm
 - ii) An npn transistor
 - iii) A variable capacitor
 - iv) A power supply
 - v) Two coils L_1 and L_2 and
 - vi) A milli ammeter
 - (ii) A ferromagnetic rod has a length of 40 mm and the density of CO2- Ana (8) the material is 7250 kg/m³. Evaluate the natural frequency of the rod if Young's modulus of the material is 11.5×10¹⁰ Nm⁻
 ².Will it produce ultrasonic waves? Justify your answer.
- 18. (a) Discuss the probability of stimulated absorption, spontaneous CO3 -Ana (16) emission and stimulated emission, from the discussion deduce the expression for the probability constants.

Or

- (b) Explain the laser action in different modes of vibration of CO_2 CO3- Ana (16) molecule
- 19. (a) Derive Schrödinger's time dependent and time independent CO4- U (16) wave equations.

Or

(b) Apply quantum theory to deduce the expression for the increase CO4- Ana (16) in wave length of the X ray photons scattered by the substance with low atomic number.

20.	(a)	You are given with card board, thermometers, screw guauge, CO5-App	(16)				
		vernier caliper etc. How will you determine the thermal					
		conductivity of the card board by Lee's disc method?					
		Or					

(b)	(i) Draw the stress-strain diagram for ductile material and	CO5- U	(8)	
	explain the various parts of the diagram.			
	(ii) Discuss the various factors affecting the elasticity of the	CO5- U	(8)	

Material.