A		Reg. No. :										
Question Paper Code: 53021												
B.E./B.Tech. DEGREE EXAMINATION, MAY 2018												
Third Semester												
Civil Engineering												
15UMA321 Transforms and Partial Differential Equations												
(Common to Mechanical, ECE, EEE, Chemical, AGRI, BME)												
(Regulation 2015)												
Dur	Duration: Three hours Maximum: 100 Marks											
Answer All Questions												
PART A - (10x 1 = 10 Marks)												
1.	In the expansion of <i>xcosx</i> as a Fourier series in (- <i>l</i> , <i>l</i>) the value of a_{n} = CO1- R											
	(a) 1	(b) -1	(c) <i>l</i>		(d) 0							
2.	In the Fourier series of x^2 in the interval $(-l, l)$ CO1- R											
	(a) $a_0 = 0$ but $a_n \neq 0$	(b) $b_n = 0$	(c) $a_0 = 0$	and $a_n = 0$	(d) none							
3.	If $F(s) = F{f(x)}$, then $F{f(x-a)} = CO2-R$											
	(a) $e^{-isx} F(s)$	(b) s + a	(c) s – a		(d) $e^{isa} F(s)$	s)						
4.	If $F{f(x)} = f(s)$, then $f(x)$ is said to be CO2- R											
	(a) self reciprocal	l (b) multi reciprocal (c) mono reciprocal			(d) nano reciprocal							
5.	The Z- transform of (3	.4 ⁿ) =				CO3- R						
	(a) $\frac{3z}{z-4}$	(b) $\frac{3z}{z+4}$	(c) $\frac{z}{z-4}$		(d) $\frac{3}{z-4}$							

- 6. If $Z[{f(n)}] = F(Z)$ then $Z[{a^n f(n)}]$ CO3- R (d) $F(\frac{Z}{a^n})$ (a) $F(\frac{Z}{a})$ (b) F(az)(c) $F(a^n z)$ The complete integral of p - q = 0 is given by CO4- R 7. (d) a = b - 1(a) a = b + 2(b) a = b + 1(c) a = bA solution that contains as many arbitrary constants as there are independent CO4- R 8. variables is called as (a) singular integral (b) general integral (c) complete integral (d) particular integral How many conditions needed to solve a one dimensional heat equation? CO5- R 9. (b) 2(c) 4(a) 3 (d) 5 CO5- R In one dimensional heat equation $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial r^2}$, what is α^2 10 (a) $\frac{Tension}{Mass}$ (d) $\frac{Mass}{Friction}$ (b) Gravity (c) Friction PART - B (5 x 2= 10Marks) 11. Find the half range sine series of f(x) = 2 in $0 < x < \pi$. CO1- U Find the Fourier sine transform of $\frac{1}{x}$, $0 < x < \infty$. CO2- U 12. 13. Solve $Z[na^n]$. CO3- App 14. Form the PDE by eliminating f from $z = xy + f(x^2 + y^2 + z^2)$ CO4- R Write all possible solutions for one dimensional wave equation. CO5- U 15. $PART - C (5 \times 16 = 80 Marks)$ (i) Find the fourier series expansion $f(x) = \begin{cases} x, & 0 < x < \pi \\ 2\pi - x, \pi < x < 2\pi \end{cases}$ CO1-App 16. (a) (8) and hence deduce that
 - $. \qquad \frac{1}{1^2} + \frac{1}{2^2} + \dots = \frac{\pi^2}{8}$

(ii) Find the complex form of Fourier series for the function CO1-App (8) $f(x)=e^{-x}$ in -1 < x < 1.

Or

(b) (i) Find the Fourier series of $y = x^2$ in $-\pi < x < \pi$ and show that CO1 -App (8) $1 + \frac{1}{2^4} + \frac{1}{3^4} + \dots = \frac{\pi^4}{90}$.

(ii) Calculate the first two harmonics of the Fourier series from CO1 -App (8) the following table:

Х	0	$\pi/3$	$2\pi/3$	π	$4\pi/3$	$5\pi/3$	2π
у	1.0	1.4	1.9	1.7	1.5	1.2	1.0

17. (a) Find the Fourier transform of $f(\mathbf{x}) = \begin{cases} 1 - \mathbf{x}^2, & |\mathbf{x}| < 1 \\ 0, & |\mathbf{x}| > 1 \end{cases}$. CO2 - App (16)

And hence,

Evaluate (i) $\int_{0}^{\infty} \frac{\sin t - t \cos t}{t^3} dt$ (ii) $\int_{0}^{\infty} \left(\frac{\sin t - t \cos t}{t^3}\right)^2 dt$

(b) Find the sine and cosine transform of e^{-ax} , a > 0. Hence, Evaluate CO2 - App (16)

$$\int_{0}^{\infty} \frac{x^{2}}{(x^{2}+a^{2})^{2}} dx \quad \text{and} \quad \int_{0}^{\infty} \frac{dx}{(x^{2}+a^{2})(x^{2}+b^{2})}.$$
18. (a) (i) Find $Z\left(\frac{1}{n(n-1)}\right)$ CO3- App (8)

(ii) Solve
$$y_{n+2} + 6y_{n+1} + 9y_n = 2n$$
 given $y_0 = y_1 = 0$, using
Z-transform. (8)

Or

(b) (i) Find the inverse Z- transform of $\frac{8z^2}{(2z-1)(4z-1)}$ by using CO3-App (8) convolution theorem.

19. (a) Solve
$$(D^3 - 7DD^2 - 6D^3) = e^{2x+y} + \sin(x+2y) + x^2y$$
. CO4-App (16)

Or

(b) (i) Solve
$$z = px + qy + \sqrt{p^2 + q^2 + 1}$$
.
(ii) Solve $x(y-z) p + y(z-x) q = z(x-y)$.
CO4 -App (8)
CO4 -App (8)

20. (a) A tightly stretched string with fixed end points x = 0 and x = l is CO5- App (16) initially in a position given by $y(x,0) = y_0 \sin^3 \left(\frac{\pi x}{\ell}\right)$. It is released from rest from this position. Find the displacement at any time't'.

Or

(b) An infinitely long plate of width π cms with insulated surfaces CO5- App (16) has its temperature u = 0 on both long sides and one of the shorter sides. The temperature along the short edge y = 0 is given by u(x, 0) = 3x, 0 < x < π. Find the steady state temperature distribution u(x, y).