A		Reg. No. :							
		Question Paper	Code: 5	52002					
B.E. / B.Tech. DEGREE EXAMINATION, MAY 2018									
Second Semester									
Civil Engineering									
15UMA202- ENGINEERING MATHEMATICS-II									
(Common to All branches)									
(Regulation 2015)									
Dura	ation: Three hours				Maxi	mum: 10	00 Marks		
Answer ALL Questions									
PART A - $(10 \text{ x } 1 = 10 \text{ Marks})$									
1.	The general solution of the linear differential equation $a_0 \frac{d^n y}{dx^n} + a_1 \frac{d^{n-1} y}{dx^{n-1}} + \dots + a_n y = X$ is						CO1- R		
	(a) $y = $ Complementary	Funtion	(b) $y = 1$	Particular	Integral				
	(c) $y = C.F + P.I$		(d) $y =$	$C.F \times P.F$	Ι				
2.	If n is a positive integer, then $\frac{1}{f(D)} x^n$ is equivalent to						CO1- R		
	$(a)\frac{1}{f(-D^2)}x^n \qquad ($	b) $\frac{1}{f(n)} x^n$	$(c)\frac{1}{f(n)}:$	x^{-n}	(d) [<i>f</i> ($(D)]^{-1} x$	c^n		
3.	Del operator is	·					CO2- R		
	(a) same as the gradient	operator	(b) vecto	or differen	tial oper	ator			
	(c) both (a) and (b)		(d) none	of these					
4.	Vector field \vec{P} is irrotation	onal if $\nabla \times \vec{P} =$					CO2- R		
	(a) ∞ (b) -1	(c) 1			(d)) 0		

5.	A single valued function $w = f(z)$ of a complex variable z is said to be analytic at a point z_{\circ} if it has								
	(a) Second derivative at	Z _o	(b) a unique derivative	at z _o					
	(c) Second derivative at	Z	(d) a unique derivative	at z.					
6.	Which of the following is not true when $f(z) = u+iv$ is analytic at a point								
	i) $u_x = v_y$ at the point ii) $u_y = -v_x$ at the point								
	iii) $u_{xx} + u_{yy} = o$ at the point iv) $u_{x}, u_{y}, v_{x}, v_{y}$ are continuous at the point								
	(a) only i	(b) only i and ii	(c) all are false	(d) all are true					
7.	Cauchy's integral theo	orem is also known as		СО4- Е					
	(a) Integral formula	(b) Cauchy's theorem	(c) C-R Equation	(d) None of these					
8.	In Taylor's series takin	ng a=0, the series is reduc	es to	CO4- R					
	(a) Fourier series	(b) Maclaurin's series	(c) Laurent's series	(d) None of these					
9.	If f(t) is a periodic fun	ction with period T then		СО5-Е					
	(a) $L(f(t)) = \frac{1}{1 - e^{ST}} \int_0^T e^{ST} dt$	stf(t)dt	(b) $L(f(t)) = \frac{1}{1 - e^{ST}} \int_0^T e^{-st} f(t) dt$						
	(c) L(f(t)) = $\frac{1}{1 - e^{-ST}} \int_0^T dt$	$e^{-st}f(t)dt$	(d) $L(f(t)) = \frac{1}{1 - e^{-ST}} \int_0^T$	$e^{st}f(t)dt$					
10.	The $L^{-1}\left(\frac{1}{s}\right)$ is			СО5- Е					
	(a) 1	(b) 2	(c) 3	(d) 0					
PART - B (5 x 2 = 10 Marks)									
11.	Find the complementary function of $(D^2 - 4D + 3)v = 2e^x$. CO1-								
12.	State Stoke's Theorem.			CO2- R					
13.	Define Bilinear Transformation.								
14.	State Cauchy' Integral	Theorem.		CO4- R					
15.	Find $L[\frac{1}{\sqrt{t}}]$.			CO5- R					

$$PART - C (5 \times 16 = 80 Marks)$$

16. (a) (i) Solve the equation $(D^2 + 6D + 9)y = e^x + \sin 3x$. CO1- App (8)

(ii) Solve the equation

$$x^{2} \frac{d^{2}y}{dx^{2}} - 2x \frac{dy}{dx} - 4y = 32(logx)^{2}.$$
Or
(8)

(b) (i) Solve
$$\frac{d^2y}{dx^2} + 4y = 4tan2x$$
 using Method of Variation of CO1- App (8) parameter.

(ii) Solve
$$(2x+3)^2 \frac{d^2y}{dx^2} - 2(2x+3)\frac{dy}{dx} - 12y = 6x$$
 CO1- App (8)

17. (a) (i) Find the directional derivative of $\phi = 4xz^2 + x^2yz - 3z$ CO2- App (8) at the point (1, -2, -1) in the direction $2\vec{t} - \vec{j} - 2\vec{k}$.

> (ii) Show that CO2-App (8) $\vec{F} = (y^2 + 2xz^2)\vec{i} + (2xy - z)\vec{j} + (2x^2z - y + 2z)\vec{k}$ is irrotational and hence find its scalar potential.

Or

(b) Verify Gauss divergence theorem for $\vec{F} = x^2\vec{\iota} + y^2\vec{j} + z^2\vec{k}$ CO2- App (16) over the cube bounded by x = 0, x = 1, y = 0, y = 1, z = 0 and z = 1.

18. (a) (i) Find the analytic function
$$w = u + iv$$
 if CO3- App (8)
 $v = e^{2x}(xcos2y - ysin2y)$. Hence find u .

(ii) If
$$f(z)$$
 is a regular function of z, prove that

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4|f'(z)|^2.$$
Or
$$Or$$

$$(8)$$

(b) (i)Show that the function
$$u = x^3 - 3xy^2 + 3x^2 - 3y^2 + 1$$
 is CO3- App (8) harmonic and determine its conjugate.

(ii) Find the bilinear transformation that maps the points CO3- App (8) $z_1 = 1, z_2 = -1, z_3 = 1$ into the $w_1 = 0, w_2 = 1, w_3 = \infty$ respectively.

19. (a)(i) Use Cauchy's Integral Formula to evaluateCO4-E(8)

$$\int_c \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)(z-3)} dz$$
, where c is the circle $|z| = 4$.

(ii) Identify the singularity of $f(z) = \frac{z^2}{(z-2)^2(z^2+9)}$ and find the residue at each CO4-App (8) singularity.

$$f(z) = \frac{1}{(z+2)(z+1)}$$
 in a laurent's series if
i) $|z| > 2$, ii) $1 < |z| < 2$

(ii) Obtain Taylor's series to represent the function CO4-App (8)

$$f(z) = \frac{(z^2-1)}{(z+2)(z+3)} \text{ in the region } |z| < 2$$

$$f(t) = \begin{cases} 1, & 0 < t < b \\ -1, & b < t < 2b \end{cases} \text{ with } f(t+2b) = f(t).$$

i) Evaluate CO5-E (8)

(ii)

$$L^{-1}\left[\frac{1-S}{(S+1)(S^2+4S+13)}\right]$$

Or

(b) (i) Use convolution theorem to find CO5-App (8) $L^{-1}\left[\frac{1}{(s+1)(s+2)}\right]$

(ii) Using Laplace Transform method to solve CO5-App (8) $y'' - 4y' + 8y = e^{2t}$, y(0) = 2, y'(0) = -2.