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Answer ALL Questions 

PART A - (10 x 1 = 10 Marks) 

1. The formula for finding the Euler constant    of a Fourier series in [0,2π] is ___ 
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2. The complex form of Fourier series of f(x) in  , is given by, f(x) = l
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4. Fourier sine transform of xf(x) is, 
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7.  When the ends of a rod is non zero for one dimensional heat flow equation, the temperature 

 function u(x,t) is modified as the sum of steady state and transient state temperatures. The 

 transient part of the solution which,  

  (a) increases with increase of time    (b) decreases with increase of time 

  (c) increases with decrease of  time    (d) increases with decrease of time 

8. The two dimensional heat flow equation in steady state is, 
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9. In the explicit formula for solving one dimensional heat equation,    is ____         

 (a) 
 

  
          (b)          (c) 

 

   
   (d)     

10. The standard five point formula in solving Laplace equation over a region is, 

(a)  
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PART - B (5 x 2 = 10 Marks) 

11. Find the Fourier constants    for x sinx in ( -π , π ). 

12. If F(f(x)) = F(s) , then prove that   )(
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13. State initial and final value theorems of  transforms. 
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14. Classify                                      

15. Derive the explicit difference equation corresponding to the partial differential equation 
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PART - C (5 x 16 = 80 Marks) 

16. (a) (i) Find the Fourier series for   21 xxxf   in   , . Deduce that                  

 6
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                                     (12) 

  (ii) Find the half range sine series for f(x) = x in  ,0 .               (4)  

Or 

(b) (i) Express f(x) = x in half range cosine series and sine series in the range 0 < x <    

   and deduce the value of .......
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(ii) The values of x and the corresponding values of f(x) over a period T are given 

below: Find a Fourier series upto first harmonic.             (8) 

x 0 T/6 T/3 T/2 2T/3 5T/6 T 

f(x) 1.98 1.3 1.05 1.3 -0.88 -0.25 1.98 

17. (a) (i) Find Fourier  transform of 
22xae , a>0 and hence show that 2/2xe is self-reciprocal.  

                          (8) 

  (ii) State and prove convolution theorem.              (8) 

Or 

(b) (i) Find Fourier cosine transform of f(x) = 
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  (ii) Solve for f(x) from the integral equation, 
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18. (a) (i) Find  (t
2
 e

-t
)     and  (sin

3
 

6

n
)                (8) 

(ii) Find 
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 by the method of partial fractions.           (8) 

  (ii) Solve : yn+2 – 3 yn+1 + 2 yn = 2
n
 given that yo = y1 = 0.           (8) 

19. (a) A string is stretched between two fixed points at a distance 2   apart and the points of  

  the string are given initial velocities v where, 

  V = 
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, x being the distance from an end point. Find the displacement 

 of the string at any subsequent time.               (16) 

Or 

(b) A bar 10 cm long with insulated sides, has its ends A and B kept at 50
o
 C and 100

o
 C 

respectively, until steady state conditions prevail. The temperature at A is then suddenly 

raised to 90
o
 C and at the same instant that at B is lowered to 60

o
 C and the end 

temperatures are maintained thereafter. Find the subsequent temperature function u(x, t) 

at any time.                    (16) 

20. (a) Solve Uxx + Uyy = 0, over the square mesh of side 4 units satisfying the following 

 boundary conditions, by using Liebmann’s iteration method by taking h = k = 1 

(i) U(0,y) = y
2
/4 for 40  y  

(ii) U(4,y) = y
2
  for 40  y  

(iii) U(x,0) = 0 for 40  x  

(iv) U(x,4) = 8+ 2x for 40  x                   (16) 

Or 

(b) (i) Solve uxx = 32 ut with h = 0.25 for t > 0; 0 < x < 1 and u(x,0) = u(0, t) = 0;     

    u(1, t) = t. Tabulate u up to t = 5 sec using Bender-Schmidt formula.                    (8) 

 (ii) 0,10,
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u
, give u(x, 0) = 0, u(0, t) = 0, ut(x, 0) = 0 and                  

  u(1, t) = 100 sin πt Compute u for 4 times steps with h = 0.25.             (8) 


