Reg. No. :

Question Paper Code: 41002

B.E. / B.Tech. DEGREE EXAMINATION, MAY 2018

First Semester

Civil Engineering

14UMA102 - ENGINEERING MATHEMATICS - I

(Common to ALL branches)

(Regulation 2014)

Duration: Three hours

Answer ALL Questions.

PART A -
$$(10 \text{ x } 1 = 10 \text{ Marks})$$

- 1. If 1 and 2 are the eigen values of $2x^2$ matrix A. what are the eigen values of A^2 .
- (a) 1 & 2 (b) 1 & 4 (c) 2 & 4 (d) 2 & 3 2. If two of the Eigen values of $\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$ are 2 and 8, then the third Eigen value is (a) -2 (b) 0 (c) 2 (d) 3 3. Is this series convergent or divergent? $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$ (a) convergent (b) divergent (c) Absolute converge (d) none of these 4. D'Alembert's test is also called (c) Abel's test (d) none of these (a) Ratio test (b) Root test

Maximum: 100 Marks

5. The radius of curvature of the curve $y = e^x$ at (0,1) is

(a)
$$2\sqrt{2}$$
 (b) $\sqrt{2}$ (c) 2 (d) $2\sqrt{3}$

6. The envelope of the family of lines y = x + a/m, *m* being a positive integer

(a)
$$y^2 = 4ax$$
 (b) $x^2 = 4ay$ (c) $x^2 + y^2 = a^2$ (d) $xy = a^2$
7. If $u = (x-y)(y-z)(z-x)$, then $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} =$
(a) 0 (b) 1 (c) ∞ (d) none of these
8. If $x = r\cos\theta$, $y = r\sin\theta$, then $\frac{\partial(x, y)}{\partial(r, \theta)} =$
(a) 1 (b) r (c) r^2 (d) 0
 $\frac{a b c}{c}$

9. $\iint_{0}^{a} \iint_{0}^{b} \int_{0}^{c} xyz dz dy dx$

(a)
$$\frac{a^2b^2c^2}{8}$$
 (b) $\frac{abc}{8}$ (c) abc (d) $a^2b^2c^2$

10. The value of the double integral $\int_0^{\pi} \int_0^a r \, dr \, d\theta$ is

(a) πa^2 (b) $\frac{\pi a^2}{2}$ (c) $\frac{\pi r^2}{2}$ (d) πr^2

PART - B (5 x
$$2 = 10$$
 Marks)

11. Write down the quadratic form corresponding to the matrix $A = \begin{bmatrix} 0 & 5 & -1 \\ 5 & 1 & 6 \\ -1 & 6 & 2 \end{bmatrix}$

12. Test for convergence of the series $\sum_{1}^{\infty} \left[\sqrt[3]{n^3 + 1} - n \right].$

13. Find the radius of curvature at the point (c, c) on the curve $xy = c^2$.

14. If $x = u^2 - v^2$ and y = 2uv, find the Jacobian of x and y with respect to u and v.

15. Indicate the region of integration of $\int_{0}^{a} \int_{\frac{x^{2}}{x^{2}}} x dy dx$.

PART - C ($5 \times 16 = 80$ Marks)

16. (a) Verify Cayley Hamilton's theorem and hence find the inverse of the matrix $\begin{bmatrix}
2 & -1 & 2 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{bmatrix}$ (16)

Or

- (b) Reduce the Q.F $x^2 + y^2 + z^2 2xy 2yz 2zx$ in to a canonical form by an orthogonal transformation. (16)
- 17. (a) Discuss the convergence of the series whose nth term is $\frac{3.6.9....3n}{4.7.10....3n+1} \cdot \frac{2^n}{3n+2}$ (16)

Or

(b) Prove that if
$$b-1 > a > 0$$
, the series $1 + \frac{a}{b} + \frac{a(a+1)}{b(b+1)} + \frac{a(a+1)(a+2)}{b(b+1)(b+2)} + \dots$ converges.
(16)

18. (a) Prove that the radius of curvature at any point of the cycloid $x = a(\theta + \sin \theta); y = a(1 - \cos \theta)$ is $4a \cos \frac{\theta}{2}$. (16)

- Or
- (b) Considering the evolute as the envelope of normals, find the evolute of $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. (16)
- 19. (a) Given the transformations $u = e^x \cos y$ and $v = e^x \sin y$ and that ϕ is a function of u and v and also of x and y, prove that $\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = (u^2 + v^2) \left[\frac{\partial^2 \phi}{\partial u^2} + \frac{\partial^2 \phi}{\partial v^2} \right]$ (16)

41002

(b) (i) Find the Taylor's series of $e^x log(1 + y)$ in powers of x and y up to third degree terms. (8)

(ii) Find the maximum value of
$$f(x, y) = \sin x \sin y \sin(x + y)$$
; $0 \le x, y < \pi$. (8)

20. (a) Change the order of integration and hence evaluate it $\int_{0}^{4a} \int_{\frac{x^2}{4a}}^{2\sqrt{ax}} xy dy dx$. (16)

Or

(b) (i) By changing in to polar coordinates, evaluate $\int_{0}^{a} \int_{y}^{a} \frac{x}{x^{2} + y^{2}} dx dy$. (8)

(ii) Find the volume of the tetrahedron bounded by the planes $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$, x = 0, y = 0and z = 0. (8)