С

Reg. No. :										
------------	--	--	--	--	--	--	--	--	--	--

Question Paper Code: 56101

B.E./B.Tech. DEGREE EXAMINATION, MAY 2018

Sixth Semester

Civil Engineering 15UCE601- STRUCTURAL ANALYSIS – II (Regulation 2015)

Duration: Three hours

Maximum: 100 Marks

PART A - (5x 1 = 5 Marks)

Answer All Questions

1.	The expression for plastic modulus of $section(Z_p)$					
	a) Z _p =I/y	b) Z _p =y/I	c) $Z_p = A/2(y_1+y_2)$	d) $Z_p = I/z$		
2.	$[P]=[k][\Delta]$ where k is			CO2- R		
	(a) Flexibility	(b) stiffness	(c) Load	(d) Displacement		
3.	The relation between fle	exibility and stiffness is		CO3- R		
	(a) directly proportional		(b) inversely proportional			
	(c) both are same		(d) None of the above			
4.	Most of the FEM softwa	are use		CO4- R		
	(a) displacement method	d (b) force method	(c) stress method	(d) hybrid method		
5.	. A suspension cable, supporting loads, will be under					
	(a)tension	(b)compression	(c)bending	(d) shear		

 $PART - B (5 \times 3 = 15 Marks)$

6.	Define shape factor.	CO1- R
7.	Write the element stiffness for a truss element.	CO2- R
8.	What is the compatibility condition used in the flexibility method?	CO3- R
9.	Define Shape function.	CO4- R
10.	What are the main functions of stiffening girders in suspension bridges?	CO5- R

$$PART - C (5 \times 16 = 80 Marks)$$

11. (a) Find the shape factor for the triangular section shown in fig. CO1-App (16)

(b) A beam of span 6 m is to be designed for an ultimate UDL of CO1- App (16) 25 kN/m. The beam is simply supported at the ends. Design a suitable I section using plastic theory, assuming $\sigma_v=250 \text{ N/mm}^2$.

12. (a) Analyse the portal frame shown in fig. by stiffness method and CO2- Ana (16) draw the BMD.

Or

- (b) Write the step by step procedure of matrix stiffness method. CO2- Ana (16)
- 13. (a) Analyse the beam shown in fig. by flexibility method and draw CO3-Ana (16) the BMD.

Or

(b) Analyse the frame using matrix flexibility method. CO3- Ana (16)

14. (a) Explain the basic steps involved in Finite element of analysis of a CO4- Ana (16) structure.

Or

(b) Determine the shape functions for the Constant Strain Triangle CO4- Ana (16) (CST).

56101

15. (a) Analyse the space frame shown in fig using tension coefficient CO5-Ana (16) method

Or

(b) A suspension cable is supported at 2 points 25 m apart. The left CO5-Ana (16) support is 2.5 m above the right support. The cable is loaded with udlof 10 kN/m throughout the span. The maximum dip in the cable from the left support is 4 m. Find the maximum and minimum tension in the cable.

