Question Paper Code: 42002

B.E. / B.Tech. DEGREE EXAMINATION, MAY 2018.

Second Semester

Civil Engineering

14UMA202 - ENGINEERING MATHEMATICS - II

(Common to ALL Branches)

(Regulation 2014)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions.

PART A - (10 x 1 = 10 Marks)

1.	The complete solution of $(D^3 - D)y = 0$ is	
	(a) $y = A + Bx + Cx^2$	(b) $y = A + Bcosx + Csinx$
	(c) $y = A + Be^{x} + Ce^{-x}$	(d) $y = Ax + Be^{-x} + Ce^{x}$

2. The roots of $(D^2+2)y$ are

(a) ± 2	(b) ±2 <i>i</i>	(c) $\pm i\sqrt{2}$	(d) √2
$\langle - \rangle$	<pre></pre>	· / —	

- 3. If $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$, the value of ∇r is
 - (a) $\frac{r}{r}$ (b) $\frac{r}{r}$ (c) $\frac{1}{r}$ (d) $\frac{1}{r}$
- 4. By stokes theorem, $\int_{c} \vec{r} \, d\vec{r} =$ _____ (a) π (b) 1 (c) 0 (d) None of these
- 5. The derivative of f(z) at z_0 is

(a) l (b) f(z) (c) $f(z_0)$ (d) $f'(z_0)$

6. The bilinear transformation that maps the points ∞ , i, 0 onto 0, i, ∞ is

(a)
$$-\frac{1}{z}$$
 (b) $-\frac{i}{z}$ (c) $\frac{i}{z}$ (d) None of these
7. Which of the following is not an analytic function?
(a) $\sin z$ (b) z (c) $\sinh z$ (d) \overline{z}
8. Conformal mapping is a mapping which preserves angle
(a) in magnitude (b) in sense
(c) both in magnitude and sense (d) Eithen in magnitude or in sense
9. $L^{-1}\left[\frac{1}{s^2 + a^2}\right] =$
(a) $\frac{\sinh at}{a}$ (b) $\frac{\sin at}{a}$ (c) $\sinh at$ (d) $\sin at$
10. Laplace transforms is an ______ transform.
(a) Discrete (b) Discrete time
(c) Data independent (d) Integral
PART - B (5 x 2 = 10 Marks)
11. Solve $(D^4 - 2D^3 + D^2)y = 0$.
12. Prove that div(curl \vec{F}) = 0.
13. Find the image of the circle $|z - 2i| = 2$ under $w = \frac{1}{z}$.

14. State Cauchy's integral formula.

15. Find the Laplace Transform of $e^{-5t}t^2$.

PART - C (
$$5 \times 16 = 80 \text{ Marks}$$
)

16. (a) (i) Solve the equation $(1+2x)^2 y'' - 6(1+2x)y' + 16y = 8(1+2x)^2$. (8)

(ii) Solve the equation $(D^2 + 4D + 3)y = e^{-x}sinx.$ (8)

Or

(b) (i) Solve
$$\frac{d^2y}{dx^2} + \frac{1}{x}\frac{dy}{dx} = \frac{12\log x}{x^2}$$
. (8)

42002

- (ii) The number N of bacteria in a culture grew at a rate proportional to N. The value of N was initially 100 and increased to 332 in 1 hour. What was the value of N after 3/2 hours?
- 17. (a) Verify Stoke's theorem for $\vec{F} = (2x y)\vec{i} yz^2\vec{j} y^2z\vec{k}$ where S is the upper half surface of the sphere $(x^2 + y^2 + z^2) = 1$ and C is the circular boundary on Z = 0 plane. (16)

Or

- (b) Verify the Gauss Divergence theorem for $\vec{F} = 4xz\vec{i} y^2\vec{j} + yz\vec{k}$ over the cube bounded by x = 0, x = 1, y = 0, y = 1, z = 0, z = 1. (16)
- 18. (a) (i) Find the Bilinear transformation which maps the points z = 0, -i, -1 into w = i, 1, 0. (8)
 - (ii) If f(z) is analytic function of z, prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4|f'(z)|^2.$ (8)

Or

- (b) (i) Prove that both real and imaginary part of an analytic function satisfy Laplace equation. (8)
 - (ii) Determine the analytic function f(z) = u + iv, if $u + v = \frac{sin2x}{cosh2y - cos2x}$
 - (8)
- 19. (a) (i) Find the Laurent's series expansion of the function

$$f(z) = \frac{7z-2}{z(z-2)(z+1)}.$$
 In the annular region $1 < |z+1| < 3.$ (8)

- (ii) Evaluate $\int_0^{2\pi} \frac{d\theta}{5+4sin\theta}$ using contour integration. (8)
 - Or

3

(b) (i) Using residue theorem, evaluate $\int_C \frac{3z^2+z-1}{(z^2-1)(z-3)} dz$ around the circle $x^2 + y^2 = 4$. (8)

42002

(ii) Evaluate
$$\int_{-\infty}^{\infty} \frac{x^2 dx}{(x^2+1)(x^2+4)}$$
 using contour integration. (8)

20. (a) (i) Find the Laplace transform of the periodic function

$$f(t) = \begin{cases} \sin\omega t & 0 < t < \frac{\pi}{\omega} \\ 0 & \pi < t < 2\frac{\pi}{\omega} \end{cases} \text{ with } f(t + 2\frac{\pi}{\omega}) = f(t). \end{cases}$$
(8)

(ii) Solve the differential equation $y'' + 2y' - 3y = \sin t$ given that y(0) = y'(0) = 0. (8)

Or

- (b) (i) Solve $y'' + 4y' + 4y = e^{-t}$, y(0) = 0 and y'(0) = 0 using Laplace transform. (8)
 - (ii) Compute y(1, 1) by using Runge-Kutta method of fourth order, given $\frac{dy}{dx} = y^2 + xy, y(1) = 1.$ (8)