Reg. No. :

Question Paper Code: 54903

B.E. / B.Tech. DEGREE EXAMINATION, MAY 2018

Fourth Semester

Chemical Engineering

15UCH404 – PHYSICAL CHEMISTRY

(Regulation 2015)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions

PART A - (10 x 1 = 10 Marks)

1.	The sum of all the exponents to which the concentrations in the rate equation are raised is called of reaction.				CO1- R
	(a) molecularity	(b) activation energy	tion (c) order	(d) factor	frequency
2.	In a chemical reaction, the concentration of one of the reactant remains CO1- constant for reactions				CO1- R
	(a) pseudo order	(b) first order	(c) zero order	(d) order	fractional
3.	The unit of specific conductance of a conductor is				CO2- R
	(a) coulombs	(b) ohms	(c) faradays	(d) mhos	5
4.	Conductometric meth solutions.	ods can be use	d for the analysis of		CO2- R
	(a) concentrated	(b) colored	(c) non-colored colloidal	(d) brine	;

5.	The three phases n equilibrium at	amely solid, liquid point.	and gas will coexist in	CO3- R	
	(a) triple	(b) reduced	(c) stationary	(d) crossover	
6.	The important factor i	nfluencing the solubili	ity of a gas in liquid is	CO3- R	
	(a) viscosity	(b) density	(c) surface tension	(d) pressure	
7.	With decrease in temperature, the extent of adsorption			CO4- R	
	(a) decrease		(b) remains unaffected		
	(c) increase		(d) first decreases and then	increases	
8.	When one of the su catalyst for that reaction	bstances formed duri on, then it is called as_	ing the reaction acts as a	CO4- R	
	(a) negative catalysis	(b) autocatalysis	(c) promoters	(d) accelerators	
9.	An example for "gas c	lispersed in liquid" col	lloidal system is	CO5 R	
	(a) mist	(b) colored glass	(c) milk	(d) soap lather	
10.	The method that is no polymer is	ot used for the determ	ination of molar mass of a	CO5- R	
	(a) colorimetry	(b) end group analys	is (c) light scattering	(d) sedimentation	
PART – B (5 x 2= 10Marks)					
11.	What are zero order re	eactions?		CO1- R	
12.	State Ostwald's dilution law.			CO2- R	
13.	State reduced phase rule. When it is used?			CO3- R	
14.	What is heterogeneous catalysis? Give examples.			CO4- R	
15.	Define: surfactants and	d emulsions.		CO5- R	

		PART – C (5 x 16= 80Marks)		
16.	(a)	(i) Derive the rate equation for a first order reaction having the stoichiometry: $A \rightarrow product$.	CO1- U	(10)
		(ii) Explain the effect of temperature on reaction rate using Arrhenius equation.	CO1- U	(6)
		Or		
	(b)	(i) Explain the mechanism involved in chain reaction with suitable example.	CO1-U	(8)
		(ii) Discuss the determination of rate constant for the reactions taking place in solutions.	CO1-U	(8)
17.	(a)	(i) Explain the broad classification of electrolytes.	CO2 -U	(6)
		(ii) State and discuss the applications of Kohlrausch's law. Or	CO2 -U	(10)
	(b)	(i) Define specific conductivity and Equivalent Conductivity.	CO2- U	(6)
		(ii) Briefly outline the main ideas of the Debye-Huckel Theory for strong electrolytes.	CO2- U	(10)
18.	(a)	Draw the pressure – temperature diagram for the water system and explain the regions of areas and curves located in the diagram.	CO3-U	(16)
		Or		
	(b)	(i) State distribution law. Explain the applications of distribution	CO3- U	(8)
		 (ii) State Henry's law and Raoult's law. Discuss its applications in gas – liquid system. 	CO3- U	(8)
19.	(a)	(i) Explain the mechanism involved in the two classes of	CO4- U	(6)
		adsorption processes.		
		(ii) Discuss the calculation of adsorption isotherm parameters	CO4- U	(10)
		using: Freundlich equation and Langmuir equation.		

Or

	(b)	Derive the Michaelis - Menten equation for an enzyme catalyzed	CO4-App	(16)
		reactions.		
20.	(a)	Discuss the preparation of colloidal solutions by the following methods: (i) Mechanical dispersion, (ii) Peptization (iii) double decomposition.	CO5- U	(16)
		Or		
	(b)	(i) What are gels? Explain the important properties and applications of the gels.	CO5- U	(8)
		(ii) Broadly classify the polymerization reactions.	CO5- U	(8)