A		Reg. No. :											
		Question Pa	ner	Co	de.	540	02]					
		_	_]	-				
	B.E. / I	3.Tech. DEGREE				DN, I	MAY	201	.8				
		Fourth											
		Chemica	Ū.		•								
	15UCH4	402 - CHEMICAL				LCU	JLA	ΓΙΟΙ	NS				
		(Regul	ation	2015)								
		(Necessary Data b	ook n	nust l	be pr	ovid	ed)						
Dui	cation: Three hours						N	/ laxi	imur	n: 1(00 M	larks	>
		Answer A PART A - (10	-			ks)							
1.	One mole is defined based on the number of elementary entities CO1- I present in atom.								1- R				
	(a) carbon – 14	(b) carbon – 6	(0	c) ca	rbon	- 12	2	((d) ca	arboi	n — 1	8	
2.	In an ideal gas mixture pressures exerted by law.	-					-					СО	1- R
	(a) Dalton's	(b) Amagat's	(0	c) Va	indei	rwaa	l's	((d) Jo	oule	- The	omso	n
3.	In material balance equivalent steady state.	uations, the	te	rm t	ecoi	nes	zero	at				CO	2- R
	(a) input	(b) output	(0	c) ou	t – tı	ırn		((d) a	ccum	nulati	ion	
4.	A limiting component	decides the	_ in th	e rea	ction	18.						CO	2- R
	(a) yield	(b) conversion ((c) sto	ichic	meti	ric n	umbe	er ((d) te	empe	ratur	e	
5.	When the partial pressure of the vapor in the gas is the same as the vapor pressure of the substance, then the relative saturation is												
	(a) 0%	(b) 50%	(0	c) 30	%			((d) 1	00%			

6.	Sling psychrometer is used to measure						
	(a) wet – bulb temper	ature	(b) dew point				
	(c) humid volume		(d) humid heat				
7.	The ultimate analysis of coal is not used to measure						
	(a) carbon	(b) nitrogen	(c) volatile matter	(d) sulfur			
8.	The gas which is present in very low concentration in the flue gases is						
	(a) CO ₂	(b) N ₂	(c) SO ₂	(d) SO ₃			
9.	The standard heat of reaction is measured at						
	(a) 100°C and 100 atr	n	(b) 25°C and 1 atm				
	(c) 25°C and 10 atm		(d) 0°C and 1 atm				
10.	Compressing a gas in a cylinder is an example for system.						
	(a) closed unsteady (b) open steady (c) closed steady (d) open us						
		PART – B	(5 x 2= 10Marks)				
11.	. Iron metal weighing 500 pounds occupies a volume of 29.25 liters. Calculate the density of iron in kg/m^3 .						
12.	2. What is recycling operations? Why it is carried out?						
13.	. What properties of an air – water vapor mixture are displayed on a humidity chart?						
14.					CO4- R		
15.	Define heat of formation.				CO5- R		
PART – C (5 x 16= 80Marks)							
16.							

kg salicyclic acid per 100 kg methanol at 25°C. Find the mass % and mole % composition of the solution. Molecular formula for salicyclic acid is HOC₆H₄COOH and for methanol is CH₃OH. (ii) Explain the calculation of following for aqueous solutions: CO1- App (8) molarity, molality, normality and concentration in gm/liter.

Or

- (b) Cracked gas from a petroleum refinery has the following CO1- App (16) composition by volume: CH₄ = 45, C₂H₆ = 10, C₂H₄ = 25, C₃H₈ = 7, C₃H₆ = 8 and C₄H₁₀ = 5. Find average molar mass of the gas mixture, composition by mass and specific gravity of the gas mixture. (16 marks)
- 17. (a) (i) In a textile mill, a double effect evaporator system CO2- App (6) concentrates weak liquor containing 4% (by mass) caustic soda to produce a lye containing 25% solids (by mass). Calculate the evaporation of water per 100 kg feed in the evaporator.

(ii) Explain the following terms: limiting reactants, excess CO2- App (10) reactants, bypass stream and purge stream.

Or

- (b) It is required to make 1000 kg mixed acid containing 60% H₂SO₄, CO2- Ana (16) 32% HNO₃ and 8% water by blending the spent acid (containing 11.3% HNO₃, 44.4% H₂SO₄, 44.3% H₂O), an aqueous acid 90% HNO₃ and an aqueous 98% H₂SO₄. All percentages are by mass. Calculate the quantities of each of the three acids required for blending. (16 marks)
- 18. (a) The weather office reports a temperature of 90°F, relative CO3- Ana (16) humidity of 85% and a barometric pressure of 14.696 psia. Calculate the following:

(i) molal humidity,

(ii) humidity (weight basis) and

(iii) molal humidity and dew point if the air is cooled to 60° F, the pressure remaining steady. Data's: partial pressure of water vapor in gas mixture at 90° F = 0.6982 psia.

Or

- (b) Describe the following terms in humidification operations: humid CO3 -U (16) heat, humid volume, dry bulb temperature and wet bulb temperature.
- 19. (a) (i) In a combustion test, 20 kg of propane (C_3H_8) is burned with CO4- App (8) 400 kg of air to produce 44 kg of CO₂ and 12 kg of CO. What

was the percent excess air? The reaction involved is:

$$C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O_2$$

(ii) Explain the principle for	Orsat analysis of flue gases.	CO4- U	(8)
(ii) Explain the principle for	Orbat analysis of mae gases.	001 0	(0)

Or

- (b) Describe the calculation of heat capacity of gases, solids and CO4-U (16) liquids.
- 20. (a) (i) Calculate the heat of formation of methane (CH4) from the CO5-App (8) following heat of formation of other compound data's: $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(\text{liq}); \quad \Delta H_a = -212,805 \text{ cal}$ $C + O_2(g) \rightarrow CO_2(g); \quad \Delta H_b = -94,030 \text{ cal}$ $2H_2(g) + O_2(g) \rightarrow 2H_2O(\text{liq}); \quad \Delta H_c = -136,640 \text{ cal}$
 - (ii) Write short notes about unsteady state energy balance CO5-U (8) equations.

Or

(b) (i) Discuss the effect of temperature and pressure on heat of CO5-U (7) reaction.
(ii) Explain the applications of energy balance equation without CO5-U (9) chemical reaction for: closed system, open system with heat transfer and open – steady state flow system.