Reg. No. :

Question Paper Code: 52004

B.E. / B.Tech. DEGREE EXAMINATION, MAY 2018

Second Semester

Electrical and Electronics Engineering

15UPH204 – SOLID STATE PHYSICS

(Common to Biomedical Engineering)

(Regulation 2015)

Duration: Three hours

Maximum: 100 Marks

PART A - (10 x 1 = 10 Marks)

1.	If the mobility of electrons in a metal increases, the resistivity C		CO1- R	
	(a) increases		(b) decreases	
	(c) remains constant		(d) first increases and then	decreases
2.	In classical free electronic obeying unc	ctron theory, electron der the equilibrium con	s constitute electron gas,	CO1 -R
	(a)Maxwell–Boltzma	nn statistics	(b) Bose Einsteins statistics	\$
	(c) Fermi Dirac statist	ics	(d) Zone theory	
3.	Conductivity of a semiconductor increases with			CO2 -R
	(a) increase in tempera	ature	(b) decrease in temperature	;
	(c) constant temperatu	ire	(d) increase in band gap	
4.	In terms of Hall coefficient, Hall mobility is given as			CO2- R
	(a) $\mu = R_H \sigma$	(b) $\mu = R_{H/} \sigma$	(c) $\mu = R_H \rho$	(d) $\mu = R_H \tau$

5.	Water is a	_substance.		CO3 -R
	(a) paramagnetic		(b) ferromagnetic	
	(c) diamagnetic		(d) anti ferro magnetic	
6.	The cooper pair is			CO3 -R
	(a) two electrons moving in	the same direction	on	
	(b) two electrons with resul	tant spin zero		
	(c) two electrons connected	through bosons		
	(d) two electrons connected	through a phone	on	
7.	Ionic polarization			CO4- R
	(a) decreases with increase	in temperature		
	(b) is independent of tempe	rature		
	(c) increases with temperatu	ıre		
	(d) first increases and then decreases with temperature			
8.	Which of the following is not a ceramic material		CO4 -R	
	(a) Alumina (b) I	Mica	(c) Boron carbide	(d) Nitinol
9.	The versatility of nanotechr	nology is due to		CO5 R
	(a) low density ratio		(b) high surface to volume	ratio
	(c) low surface to volume ratio		(d) high density ratio	
10.	As particle size is reduced to nano gold transforms from		CO5 -R	
	(a) liquid to gas (b) s	solid to liquid	(c) solid to gas	(d) liquid to solid
		PART - B (5 x)	2= 10Marks)	
11.	State Wiedemann Franz law	W.		CO1 -R
12.	Distinguish between elemental and compound semiconductors.			CO2- R
13.	What are ferrites? Mention	any one applicati	ion of ferrites.	CO3- R

14.	Mer	Mention any two properties of ceramics.		CO4- R		
15.	Why	Why are nanoparticles chemically very active?				
	PART – C (5 x 16= 80Marks)					
16.	(a)	Obtain an expression for electrical conductivity for metals on the basis of classical free electron theory and calculate electrical conductivity of copper if the relaxation time is 2.5×10^{-14} s and electron density is 8.5×10^{-28} m ⁻³	CO1 -App	(16)		
		Or				
	(b)	(i) Define density of energy states in metals. Calculate carrier concentration in metals by deriving an expression for density of states.	CO1 -App	(10)		
		(ii) Obtain an expression for Fermi energy in terms of carrier concentration in metals.		(6)		
17.	(a)	(i) What is Hall effect? Obtain the expression for Hall coefficient in terms of current density and electronic charge.	CO2 -App	(8)		
		(ii) Hall coefficient of certain silicon specimen was found to be $-7.35 \times 10^{-5} \text{ m}^3 \text{C}^{-1}$. Determine the nature of the semiconductor, if the conductivity was 200 $\Omega^{-1}\text{m}^{-1}$. Calculate the density and mobility of the charge carriers	CO2 -App	(8)		
		Or				
	(b)	Distinguish between	CO2 -Ana	(8)		
		(i) Direct and indirect bandgap semiconductor				
		(ii) Intrinsic and extrinsic semiconductors	CO2 -Ana	(8)		
18.	(a)	(i) Classify ferromagnetic materials based on their spin.	CO3 -Ana	(8)		
		(ii) Distinguish between hard and soft magnetic materials.	CO3 -Ana	(8)		

Or

	(b)	Show that superconductors are perfect diamagnet. Differentiate type I and type II superconductor. Why do we prefer Type II superconductors for making permanent magnets?	CO3 -Ana	(16)
19.	(a)	(i) What is meant by internal field in dielectrics? Obtain an expression for internal field experienced by an atom in a cubic structure using Lorentz method.	CO4 -U	(8)
		(ii) Assume ε_r as dielectric constant of the material and α_e as electronic polarisability, deduce Clausius Mosotti relation using the expression obtained above for internal field.	CO4- U	(8)
		Or		
	(b)	(i) Explain electronic polarizability in atoms and obtain an expression for electronic polarizability in terms of radius of the atoms.	CO4 -Ana	(10)
		(ii) Find out the average radius of the atom of an air molecule if the electronic polarisability of the atom in air molecule is 9 x 10 $^{-41}$ Fm ⁻² .	CO4 -Ana	(6)
20.	(a)	(i) Differentiate between top down and bottom up method of nanoparticle synthesis.	CO5- U	(8)
		(ii) Describe CVD method used for the synthesis of nanomaterials Or	CO5 -U	(8)
	(b)	(i) What are nanophase materials? Describe any one method used	CO5 -U	(12)
		for the synthesis of nanomaterials.		
		(ii) Mention the applications of nanomaterials.	CO5 -U	(4)