A	A	Reg. No. :		
		Question Pape	er Code: 52B08	
	B.E. /	B.Tech. DEGREE EX	AMINATION, MAY 201	8
		Second S	Semester	
		Biomedical	Engineering	
	15UB	M208 - ELECTRICA	L CIRCUITS ANALYSI	S
		(Regulati	on 2015)	
Dura	ation: Three hours		Maximum: 10	00 Marks
		Answer ALI	L Questions	
		PART A - (10 x	1 = 10 Marks)	
1.	A circuit contains two un-equal resistances in parallel			CO1-R
	(a) Current is same in both		(b) Large current flows	in larger resistor
	(c) Potential difference a	cross each is same	(d) Smaller resistance h	as smaller conductance
2.	Ohm's law is not applicable in all the following cases except			CO1- R
	(a) Electrolytes		(b) Arc lamps	
	(c) Insulators		(d) Vacuum ratio value	S.
3.	Superposition theorem is	s valid only for		CO2- R
	(a) linear circuits		(b) nonlinear circuits	
	(c) both linear and non linear		(d) neither of the two	
4.	Norton's equivalent circ	uit consists of		CO2- R
	(a) voltage source in parallel with resistance		(b) voltage source in se	ries with resistance
	(c) current source in series with resistance		(d) current source in pa	rallel with resistance
5.	What is the total reactance of a series RLC circuit at resonance?			CO3- R
	(a) equal to X_L	(b) equal to X_C	(c) equal to R	(d) zero

6.	The bandwidth is defined as the band of frequen	ncies between f_2 and f_1 . CO3- R	٢		
	(a) $f_1 - f_2$ (b) $f_2 - f_1$	(c) $f_1 x f_2$ (d) f_1 / f_2			
7.	The transient response occurs	CO4- R	ξ		
	(a) only in resistive circuits	(b) only in inductive circuits			
	(c) only in capacitive circuits	(d) both in (b) and (c)			
8.	The transient current in a loss – free LC circuit when excited from an ac CO4- R source is ansine wave.				
	(a) undamped (b) over damped	(c) under damped (d) critically damped	1		
9.	In a three phase unbalanced star connected syst	em, the vector sum of the CO5- R	٤		
	(a) Zero	(b) not zero			
	(c) one	(d) three times the current in the each phase			
10.	Wattmeter deflection in ac circuit is proportional to the				
	(a) maximum power in the circuit	(b) instantaneous power in the circuit			
	(c) average power in the circuit	(d) real power in the circuit			
11.	PART – B (5 x 2 What is a node, a junction and a branch?	2= 10Marks) CO1- R	-		
12.	List some applications of maximum power trans	ofer theorem. CO2- R	-		
13.	Give the relationship between bandwidth and selectivity.				
14.	Define time constant of RC and RLC circuit.				
15.	Write down the line and phase values in star and delta connection.				
16.	PART – C (5 x 16= 80Marks) (a) In the circuit shown, determine the current through the 2Ω resistor CO1- App (16) and the total current delivered by the battery. Use Kirchoff's law.				

(b) Determine voltages at each node for the circuit shown

17. (a) Obtain the Norton's equivalent circuit and determine the currentCO2- App(16)flowing through the 5Ω resistor for the circuit shown.CO2- App(16)

Or

(b) For the circuit shown, verify reciprocity theorem.

3

CO2-Ana (16)

18. (a) Obtain the expression for Q- Factor of parallel resonance of a circuit CO3- Ana (16) having R,L and C.

Or

- (b) Explain and derive the relationships for bandwidth and half power CO3- Ana (16) frequencies of RLC series circuit.
- 19. (a) Derive an expression for the complete solution of current for RC CO4-U (16) series circuit.

Or

(b) The circuit shown consists of resistance, inductance, and CO4- Ana (16) capacitance in series with a 100V source when the switch is closed at t = 0. Find the current transient.

20. (a) With a neat circuit and phasor diagram, explain the three phase CO5-U (16) power measurement by two wattmeter method and also derive the expression for Power Factor.

Or

(b) (i) Develop the expression for balanced delta connected load and CO5-U (8) draw the phasor diagram.

(ii) A balanced star connected load having an impedance $(15+j20) \Omega$ CO5-U (8) is connected to a three phase, 440v; 50Hz supply. Find the line currents and the power absorbed by the load. Assume RYB phase sequence.